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Outline

Introduction: A large Nc relationship of weakly-coupled continuum
QCD on S1 × S3 with a truncated action, and strongly-coupled lattice
QCD with static quarks from a 3d effective spin model

Corrections: What happens to this relationship at the next order in
the strong coupling and hopping expansions?

I The strong coupling expansion to O(β2Nt )
I The hopping expansion to O(κ2Nt )
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What is the leading order relationship?
What we’re investigating is a large Nc correspondence between equations
of motion.

Using this correspondence observables in one theory can be calculated from
observables in the other under a suitable transformation of parameters.

QCD on S1 × S3 with
a truncated action

λ→ 0

small volume

any m <∼ µ

continuum

←−−→
Nc→∞

Lattice QCD 3d
effective spin model

λ→∞
large volume

heavy quarks, m <∼ µ

lattice

What can be mapped?

We mapped the polyakov lines, quark number, and resulting phase
diagram for QCD with µ 6= 0 from S1 × S3 to the lattice strong coupling
expansion with heavy quarks.
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1-loop action on S1 × S3

[Aharony et al - Adv.Theor.Math.Phys. 8 (2004) [hep-th/0310285]]

QCD action of Polyakov lines ρn = 1
Nc

∑Nc
j=1 e

inθj .

SQCD = N2
c

∞∑
n=1

1

n
(1− zvn) ρnρ−n

+ NfNc

∞∑
n=1

(−1)n

n
zfn

(
enβµρn + e−nβµρ−n

)
,

β = 1/T , R = radius of S3, m = quark mass

zvn =
∞∑
`=1

d
(v)
` e−nβε

(v)
` = 2

∞∑
`=1

`(`+ 2)e−nβ(`+1)/R

zfn =
∞∑
`=1

d
(f )
` e−nβε

(f )
` = 2

∞∑
`=1

`(`+ 1)e
−n β

R

√
(`+ 1

2
)2+m2R2

YM deconfinement transition at zv1 = 1 (Tc ' 0.759/R) [Aharony et al
(2003)].
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Lattice strong coupling expansion
[Langelage, Lottini, Philipsen - JHEP 1102 (2011) 057[arXiv:1010.0951]]

After integrating out the spatial link variables the lattice Yang-Mills
partition function can be simplified by using the character expansion

ZYM =

∫
SU(Nc )

∏
z

dWz

∏
〈xy〉

[
1 +

∑
R

λR
[
χR(Wx)χR(W †y ) + χR(W †x )χR(Wy )

]]
.

χR(Wx) = TrR(Wx) are characters of Polyakov lines Wx =
∏Nτ
τ=1 U0(x, τ)

in representation R. The
∏
〈xy〉 is over nearest neighbor sites.

The λR are expansion parameters in powers of 1
g2Nc

,

λR = [uR ]Nτ [1 +O (u)] ,

with

u ≡ uF −−−−→
Nc→∞

1

g2Nc
.
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Hopping expansion - static quark limit
[Langelage, Lottini, Philipsen - JHEP 1102 (2011) 057 [arXiv:1111.4953]]

The fermion determinant can be approximated in the static, heavy quark
limit by the hopping expansion

log det( /D + γ0µ+ m) = a1h[eµ/TTrWx + e−µ/TTrW †
x ]

+ a2h
2[e2µ/TTr(W 2

x ) + e−2µ/TTr(W †2
x )] + ... .

For Wilson fermions

an = 2
(−1)n

n
, h = κNt

[
1 +O(κ2)

]
, κ =

1

ma + d + 1
.

See also [De Pietri, Feo, Seiler, Stamatescu - Phys.Rev. D76 (2007) 114501

[arXiv:0705.3420]]
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What are the leading order transformations?
[Hollowood and JM - JHEP 1210 (2012) 067 [arXiv:1207.4605]]

To leading order in a combined lattice strong coupling and hopping
expansion the action is [Damgaard and Patkós (Phys. Lett. B 172 (1986) 369)]

S
(1)
lat − SVdm =− 2uNtD

∑
x

[
〈TrW 〉TrW †x + 〈TrW †〉TrWx − 〈TrW 〉〈TrW †〉

]
− 2Nf κ

Nτ

∑
x

[
eµ/TTrWx + e−µ/TTrW †x

]
.

From 1-loop perturbation theory the action for QCD on S1 × S3 is

SS1×S3 − SVdm =− N2
c zv1ρ1ρ−1

− NfNczf 1
(
eµ/Tρ1 + e−µ/Tρ−1

)
,

where the action is truncated at n = 1. This is a good approximation for
µ < εf 1 and T not too high (such that zv1, zf 1e

µβ � zv2, zf 2e
2µβ).

Transformations: ρ1 ↔
1

Nc
〈TrW 〉 ,

ρ−1 ↔
1

Nc
〈TrW †〉 ,

zv1 → 2uNtD ,

zf 1 → 2κNt ,
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Lattice strong coupling expansion
[Langelage, Lottini, Philipsen - JHEP 1102 (2011) 057[arXiv:1010.0951]]

After integrating out the spatial link variables the lattice Yang-Mills
partition function can be simplified by using the character expansion

ZYM =

∫
SU(Nc )

∏
z

dWz

∏
〈xy〉

1 +
∑
R

λR
[
χR(Wx)χR(W †y ) + χR(W †x )χR(Wy )

] .
χR(Wx) = TrR(Wx) are characters of Polyakov lines Wx =

∏Nτ
τ=1 U0(x, τ)

in representation R. The
∏
〈xy〉 is over nearest neighbor sites.

The λR are expansion parameters in powers of 1
g2Nc

,

λR =
[
uR

]Nτ
[1 +O (u)] ,

with

u ≡ uF −−−−→
Nc→∞

1

g2Nc
.
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uR for general Nc

The couplings can be obtained from

uR =
1

dR

ũR
ũ0

,

where dR is the dimension of the representation R,

ũR =
∞∑

n=−∞
det
[
Iλj+i−j+n(x)

]
,

and

ũ0 =
∞∑

n=−∞
det [Ii−j+n(x)] ,

with x ≡ 2
g2 . Iν(x) is the modified Bessel function of the first kind. The λj

represent the Young tableau of the representation R.
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Labeling a representation: λi

The Young tableau of a representation R is labeled by
(µ) = (µ1, µ2, ..., µN−1), where µ1 is the number of columns with 1 box,
µ2 is the number of columns with 2 boxes, ..., and ending with the
number of columns with N − 1 boxes.

The λi descend in magnitude λ1 ≥ λ2 ≥ ... ≥ λN . The definition is
{λ} = {λ1, λ2, ..., λN}, where λi = µi + µi+1 + ...+ µN−1, such that
λN−1 = µN−1, and λN = 0.
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Double Young diagrams
[Drouffe and Zuber]

In the large Nc limit the couplings can also be obtained from double
Young diagrams. The formula for the uR simplifies to the form

uR =
1

dR

σ{m}

|m|!
σ{n}

|n|!
(Ncu)|λ| ,

where
σ{k}

|k |!
= dk

Nc−1∏
i=0

i !

(λNc−i + i)!
.

Here the λi = {m1m2, ..., 0, 0, ...,−n1,−n2, ...} represent the double
Young tableau of the representation R.
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Double Young diagrams

fundamental: λ = {1}, {−1}

symmetric λ = {2}, {−2}

antisymmetric λ = {1, 1}, {−1,−1}

adjoint λ = {1,−1}
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uR for Nc →∞

Fundamental
uF −−−−→

Nc→∞
u .

Symmetric
uS −−−−→

Nc→∞
u2 .

Antisymmetric
uAS −−−−→

Nc→∞
u2 .

Adjoint
uAdj −−−−→

Nc→∞
u2 .
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Lattice strong coupling expansion
[Langelage, Lottini, Philipsen - JHEP 1102 (2011) 057[arXiv:1010.0951]]

After integrating out the spatial link variables the lattice Yang-Mills
partition function can be simplified by using the character expansion

ZYM =

∫
SU(Nc )

∏
z

dWz

∏
〈xy〉

[
1 +

∑
R

λR
[
χR(Wx)χR(W †y ) + χR(W †x )χR(Wy )

] ]
.

χR(Wx) = TrR(Wx) are characters of Polyakov lines Wx =
∏Nτ
τ=1 U0(x, τ)

in representation R. The
∏
〈xy〉 is over nearest neighbor sites.

The λR are expansion parameters in powers of 1
g2Nc

,

λR = [uR ]Nτ [1 +O (u)] ,

with

u ≡ uF −−−−→
Nc→∞

1

g2Nc
.
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Characters

One can obtain the characters χR(Wx) from the Frobenius formula,

χR(W ) = TrRW =
1

n!

∑
j∈Sn

χR(j)(TrFW )j1(TrFW
2)j2 ...(TrFW

n)jn ,

where
n is the number of boxes in the Young tableau of the representation R,

χR(j) is the group character, in the representation R, of the permutations
j = j1, j2, ..., jn, of the symmetric group Sn.

In practice it is simpler to obtain the characters for the symmetric
representations,

χS(j) =
n!∏n

k=1 k
jk jk !

,

then apply suitable tensor product decompositions to obtain the other
characters.
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Characters

Symmetric representation is:

TrSW = Tr(2,0,...,0)W =
1

2

[
(TrW )2 + (TrW 2)

]
,

From (1, 0, ..., 0)⊗ (1, 0, ..., 0) = (0, 2, 0, ..., 0)⊕ (2, 0, ..., 0), the
antisymmetric representation is:

TrASW = Tr(0,2,0,...,0)W =
1

2

[
(TrW )2 − (TrW 2)

]
,

From (1, 0, ..., 0)⊗ (0, ..., 0, 1) = (1, 0, ..., 0, 1)⊕ 1 the adjoint
representation is:

TrAdjW = Tr(1,0,...,0,1)W = TrWTrW † − 1 .
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Corrections to the action

Adding up the contributions from the fundamental, symmetric,
antisymmetric, and adjoint representations, the correction to the action at
O(u2Nt ) is

λ2S
(2)
g = −u2Nt

2

∑
〈xy〉

[
Tr(W 2

x )Tr(W †2
y ) + Tr(W †2

x )Tr(W 2
y )

− TrWxTrW
†
x − TrWyTrW

†
y

]
.

Using large Nc factorization this can be rewritten as

λ2S
(2)
g = −d u2Nt

∑
x

[
〈Tr(W 2)〉Tr(W †2

x ) + 〈Tr(W †2)〉Tr(W 2
x )

− 〈Tr(W †2)〉〈Tr(W 2)〉 − 2 TrWxTrW
†
x

]
.
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Lattice strong coupling expansion
[Langelage, Lottini, Philipsen - JHEP 1102 (2011) 057[arXiv:1010.0951]]

After integrating out the spatial link variables the lattice Yang-Mills
partition function can be simplified by using the character expansion

ZYM =

∫
SU(Nc )

∏
z

dWz

∏
〈xy〉

[
1 +

∑
R

λR
[
χR(Wx)χR(W †y ) + χR(W †x )χR(Wy )

]]
.

χR(Wx) = TrR(Wx) are characters of Polyakov lines Wx =
∏Nτ
τ=1 U0(x, τ)

in representation R. The
∏
〈xy〉 is over nearest neighbor sites.

The λR are expansion parameters in powers of 1
g2Nc

,

λR = [uR ]Nτ
[
1 + O (u)

]
,

with

u ≡ uF −−−−→
Nc→∞

1

g2Nc
.
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Decorations
[Langelage, Lottini, Philipsen - JHEP 1102 (2011) 057 [arXiv:1010.0951]

There are higher order corrections to nearest neighbor contribution to the
action from fundamental representation Polyakov lines. These are
corrections to the O(uNτ ) terms which take the form

uNτ λ′g1 S
(1)
g = uNτ λ′g1(u,Nτ )

∑
〈xy〉

[
TrWxTrW

†
y + TrW †

xTrWy

]
Some contributions are:

No decorations

uNτS
(1)
g

One raised plaquette decoration (3 spatial dimensions)

uNτ
[
4Nτu

4
]
S
(1)
g
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Decorations
[Langelage, Lottini, Philipsen - JHEP 1102 (2011) 057 [arXiv:1010.0951]

Two raised plaquette decorations which are not next to each other

uNτ
[

1

2!
(4Nτu

4) · 4(Nτ − 3)u4
]
S
(1)
g

Two consecutive raised plaquette decorations which do not face the same
direction

uNτ
[
4Nτu

4 · 3u4
]
S
(1)
g

Two consecutive attached raised plaquette decorations

uNτ
[
4Nτu

6
]
S
(1)
g

or 3, 4, etc.
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Hopping expansion - static quark limit
[Langelage, Lottini, Philipsen - JHEP 1102 (2011) 057 [arXiv:1111.4953]]

The fermion determinant can be approximated in the static, heavy quark
limit by the hopping expansion

log det( /D + γ0µ+ m) = a1h[eµ/TTrWx + e−µ/TTrW †
x ]

+ a2h
2[e2µ/TTr(W 2

x ) + e−2µ/TTr(W †2
x )] + ... .

For Wilson fermions

an = 2
(−1)n

n
, h = κNt

[
1 + O(κ2)

]
, κ =

1

ma + d + 1
.

See also [De Pietri, Feo, Seiler, Stamatescu - Phys.Rev. D76 (2007) 114501

[arXiv:0705.3420]]
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Hopping expansion - corrections
[Langelage, Lottini, Philipsen - JHEP 1102 (2011) 057 [arXiv:1111.4953]]

There are also corrections to the hopping expansion in the ’static’ quark
limit which include short spatial detours. These corrections to the leading
O(κNτ ) terms contribute before the O(κ2Nτ ) contributions.

κNτλ′f 1S
(1)
f = 2κNτλ′f 1(κ, u,Nτ )[eµ/TTrWx + e−µ/TTrW †

x ]

For example:

...

κNτ

[
6Nτκ

2
Nτ−1∑
l=1

ul

]
S
(1)
f .
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What is the new correspondence?

Slat =− 2uNt λ′g1 D
∑
x

[
〈TrW 〉TrW †x + 〈TrW †〉TrWx − 〈TrW 〉〈TrW †〉

]
− d u2Nt

∑
x

[
〈Tr(W 2)〉Tr(W †2x ) + 〈Tr(W †2)〉Tr(W 2

x )

−〈Tr(W †2)〉〈Tr(W 2)〉 − 2 TrWxTrW
†
x

]
+ Nf

∑
x

[
− 2κNτ λ′f 1

[
eµ/TTrWx + e−µ/TTrW †x

]
+κ2Nτ

[
e2µ/TTr(W 2

x ) + e−2µ/TTr(W †2x )
] ]

.

SS1×S3 − SVdm = −N2
c

[
zv1ρ1ρ−1 +

1

2
zv2ρ2ρ−2

]

+ NfNc

[
− zf 1

(
eµ/Tρ1 + e−µ/Tρ−1

)
+

1

2
zf 2
(
e2µ/Tρ2 + e−2µ/Tρ−2

) ]
.
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Transformations

ρ1 ↔
1

Nc
〈TrW 〉 ,

ρ−1 ↔
1

Nc
〈TrW †〉 ,

zv1 → 2uNtDλ′g1 ,

zf 1 → 2κNtλ′f 1 ,

ρ2 ↔
1

Nc
〈Tr(W 2)〉 ,

ρ−2 ↔
1

Nc
〈Tr(W †2)〉 ,

zv2 → u2NtD ,

zf 2 → 2κ2Nt ,
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Conclusions

A large Nc relationship of EOMs in QCD on S1 × S3 from 1-loop
perturbation theory, and lattice QCD from a combined strong
coupling and hopping expansion, can still be defined when the actions
are truncated at 2 windings of the Polyakov lines.

For lattice variables β and κ it is unclear how to get to the theory on
S1 × S3, but one can still go from S1 × S3 to the lattice theory.

The lattice action, and the representation-dependent couplings, take a
simplified form up to O(β2Nτ ) and O(h2), in the large Nc limit.

Thanks!
Special thanks to Christian Holm Christensen for giving us a copy of his
master thesis and to David Gross and Jens Langelage for several insightful
discussions.
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