Phase Transitions and Gluodynamics in 2-Colour Matter at High Density

T. Boz, S. Cotter, LF, D. Mehta, J.-I. Skullerud, Eur. Phys. J. A49 (2013) 87.

Leonard Fister NUI Maynooth

XQCDI3 Bern, August 7, 2013

motivation

- sign problem in Monte Carlo simulations in QCD
- 2-colour matter (QC₂D): QCD-like theory
- QC₂D has chiral symmetry breaking and confinement/deconfinement
- (bosonic) diquarks are theory's lightest baryons, \rightarrow can condense
- first principle lattice computations in QC2D at all μ/T
- benchmark lattice computations and continuum approaches

→ cf. talk Yuji Sakai

outline

- motivation and introduction
- simulational details
- phase transitions (superfluid to normal, deconfinement)
- static quark potential
- gluodynamics (μ &T effects in gluon propagator)
- phase diagram
- summary

introduction to QC_2D

for lattice results see

- Cotter, Giudice, Hands, Skullerud, Phys. Rev. D87, 034507 (2013).
- XQCD-poster of Pietro Giudice, 'Thermodynamics of Dense 2-Color Matter'.
- Boz, Cotter, LF, Mehta, Skullerud, Eur. Phys. J. A49 (2013) 87.
- Skullerud, PoS QCD-TNT09 (2009) 043; Nucl. Phys. A820 (2009) 175C-178C.
- phase transitions
 - superfluidity (diquark condensate <qq>)
 - deconfinement (Polyakov loop L)
 - (dynamical chiral symmetry breaking)
- at least 3 phases
 - hadronic (low T, low μ): <qq>=0, <L> \approx 0
 - quarkyonic (low T, intermediate μ): $\langle qq \rangle \neq 0$, $\langle L \rangle \approx 0$
 - deconfined quark-gluon plasma (high T): <qq>=0, <L>≠0
 - (?) deconfined, superfluid (high μ , low T):<qq> \neq 0 \neq <L>
 - (?) BEC (for smaller m_{π}/m_{ρ})
- Silver Blaze property for $\mu_o \leq m_{baryon}/N_c$
- bulk thermodynamics:

quark number density/susceptibility, pressure, energy density

- gluon propagator antiscreened/screened at intermediate/high μ

simulational details

- Wilson gauge action with 2 flavours of unimproved Wilson fermion
- diquark source j to lift low-lying eigenmodes, 'physical' limit $j \rightarrow 0$
- $\beta = 1.9$, $\kappa = 0.168$, a = 0.178(6) fm, $m_{\pi} = 717(25)$ MeV, $m_{\pi}/m_{\rho} \approx 0.8$
- *ja* = 0.02–0.05
- most simulations on 12³x24
- $\mu a = 0.25 1.1$
- for thermal aspects: $16^3 \times N_{\tau}$, with $N_{\tau} = 4-20$, $\mu a = 0.35-.6$
- for details see

Cotter, Giudice, Hands, Skullerud, Phys. Rev. D87, 034507 (2013). Boz, Cotter, LF, Mehta, Skullerud, Eur. Phys. J. A49 (2013) 87.

phase transitions: superfluid to normal transition

 order parameter for superfluidity: diquark condensate

 $\langle qq \rangle = \langle \psi^{2tr} C \gamma_5 \tau_2 \psi^1 - \bar{\psi}^1 C \gamma_5 \tau_2 \bar{\psi}^{2tr} \rangle$

- linear extrapolation to $j \rightarrow 0$ has large uncertainties
- clear transition from superfluid phase <qq> ≠ 0 to normal phase <qq> = 0
- expected 2nd order phase transition (3d XY-model) but not enough data to determine order properly
- phase transition temperature T_s from inflection point of <qq>, linear extrapolation to $j \rightarrow 0$

$a\mu$	0.35	0.40	0.50	0.60
$aT_s(0.04)$	0.121(6)	0.108(2)	0.111(5)	0.102(6)
$aT_{s}(0.02)$	0.097(16)	0.096(5)	0.097(2)	0.093(5)
aT_s	0.073(24)	0.084(8)	0.083(5)	0.083(6)
$T_s (MeV)$	82(27)	94(9)	93(6)	93(7)

phase transitions: deconfinement transition

 'order parameter' for deconfinement: exp. value of Polyakov loop <L>

$$L(\vec{x}) = \frac{1}{N_c} \operatorname{tr} \mathcal{P} e^{ig \int_0^{1/T} dx_0 A_0(x)}$$

- crossover at all μ
- renormalisation of <L> is T-dependent
- crossover temperature T_d from inflection point (in scheme B)
- T_d decreases as μ increases

μa	$T_d a$	$T_d \ ({ m MeV})$
0.0	0.193(20)	217(23)
0.35	0.140 – 0.220	157-247
0.40	0.108 – 0.200	121-225
0.50	0.080 - 0.200	90-225
0.60	0.060 - 0.135	67-152

|6³×N_τ, ja=0.04(, 0.02)

renormalisation:

$$L_R(T,\mu) = Z_L^{N_\tau} L_0(\frac{1}{aN_\tau},\mu)$$

 $L_R\left(T == \frac{1}{4a}, \mu = 0\right) = \begin{cases} 1 & \text{solid symbols} \leftarrow \text{scheme A} \\ 0.5 & \text{open symbols} \leftarrow \text{scheme B} \\ \dots \text{ are multiplied by 2} \\ \text{to facilitate comparison} \end{cases}$

static quark potential

- linear rising potential indicates confinement
- string breaking if quarks dynamical, but intermediate region with linear rise
- high T: Debye screening expected
- data obtained from fitted Wilson loop

 $W(r,\tau) \sim \exp\left(-V(r)\tau\right)$

- superfluid region ($a\mu \approx 0.5$): potential flatter than $\mu=0=j$
- deconfinement region ($a\mu$ =0.9) potential consistent with μ =0
- pattern consistent with previous findings Hands, Kim, Skullerud, Eur. Phys. J. C48, 193 (2006).

static quark potential

- quantify variation with μ via fits
 - (standard) Cornell potential

$$V(r) = C(\mu, j) + \sigma(\mu, j)r + \frac{\alpha(\mu, j)}{r}$$

add exponential term (allow for screening)

$$V(r) = C(\mu, j) + \frac{\sigma(\mu, j)r}{B(\mu, j)}e^{-Br} + \frac{\alpha(\mu, j)r}{r}$$

- σ const for low μ , increases for high μ
- exponential term insensitive to μ but non-zero, no interpretation as screening mass
- possible explanations
 - medium with long-range interactions
 - screening not seen in Wilson loop
 - large lattice artefacts for large μ

gluon propagator

- study effects of T and μ : guideline for full QCD (?)
- (minimal) Landau gauge: only transverse mode(s), chromomagnetic D_M and -electric D_E modes

$$D_{\mu\nu} = P^{M}_{\mu\nu} D_{M}(q_{s}, q_{0}) + P^{E}_{\mu\nu} D_{E}(q_{s}, q_{0})$$

seperately depends on

spatial momentum q_s and Matsubara modes q₀
small volume dependence on lattices used

gluon propagator $-\mu$ -dependence

- mild enhancement at intermediate μ , \leftarrow in superfluid, confined phase
- suppression at high μ , \leftarrow in deconfined phase

gluon propagator $-\mu$ -dep. at high temperature

at high temperatures $(16^3 \times 8 \text{ lattice})$

- D_M has enhancement for intermediate/large μ for small/large momenta
- D_E suppressed

gluon propagator - thermal dependence

zero modes:

- \bullet DM hardly feels temperature for low and intermediate T
- D_E suppressed with temperature

gluon propagator – fits

• 3 parameter (multi-mode) fit for the propagator

$$D_{M/E}^{\text{fit}}(q^2) = \frac{\Lambda^2}{(q^2 + \Lambda^2)^2} \left(q^2 + \Lambda^2 a_{M/E}\right)^{-b_{M/E}}$$

- Λ fixed in the vacuum: $a\Lambda = 0.999(3)$
- \bullet am/E and bm/E are T- & $\mu\text{-dependent}$
- χ²/d.o.f. ≲10
- no significant *j*-dependence

 $16^3 \times 24$, $\mu a = 0.5$, ja = 0.04

gluon propagator – fits

 $16^3 x N_{\tau}$, $\mu a = 0.5$, ja = 0.04

summary

- 2-colour, 2-flavour QCD at T & mu
- superfluid to normal transition
 - at 0.35 \lesssim aµ \lesssim 0.6 (µ =385-665MeV),
 - T_s constant in μ
 - second order (?)
- deconfinement transition
 - (broad) crossover
 - \bullet T_d decreases, crossover broadens when μ increases
- static quark potential
 - \bullet at most weakly screened at intermediate μ
 - dense but deconfined medium not (ordinary) QGP (?)
- chromomagnetic and chromoelectric gluon propagators
 - electric: strongly screened at increasing μ and T
 - magnetic: mildly enhanced/suppressed for intermediate/large μ , little sensitivity to T
- phase diagram
 - at least three phases: hadronic, quarkyonic, QGP
 - possible deconfined and superfluid phase

outlook

- smaller lattice spacings, controlled extrapolation to cont. limit, identify lattice artefacts
- lack of screening (or even antiscreening) in static quark potential \rightarrow exotic phase ?
- gluon and quark propagators
- compare lattice results with functional methods