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• sign problem in Monte Carlo simulations in QCD

• 2-colour matter (QC2D): QCD-like theory

• QC2D has chiral symmetry breaking and confinement/deconfinement

• (bosonic) diquarks are theory‘s lightest baryons,   ⤳ can condense

• first principle lattice computations in QC2D at all μ/T

• benchmark lattice computations and continuum approaches
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• motivation and introduction
• simulational details
• phase transitions   (superfluid to normal, deconfinement)

• static quark potential
• gluodynamics  (μ & T effects in gluon propagator)

• phase diagram
• summary
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introduction to QC2D

• phase transitions
• superfluidity     (diquark condensate <qq>)
• deconfinement (Polyakov loop L)
• (dynamical chiral symmetry breaking)

• at least 3 phases
• hadronic (low T, low μ): <qq>=0,  <L>≈0
• quarkyonic (low T, intermediate μ): <qq>≠0, <L>≈0
• deconfined quark-gluon plasma (high T): <qq>=0, <L>≠0 
• (?) deconfined, superfluid (high μ, low T):<qq>≠0≠<L>

• (?) BEC (for smaller m𝜋/m𝜌)

• Silver Blaze property for μo ≲mbaryon/Nc

• bulk thermodynamics:
       quark number density/susceptibility, pressure, energy density
• gluon propagator antiscreened/screened at intermediate/high μ

for lattice results see
• Cotter, Giudice, Hands, Skullerud, Phys. Rev. D87, 034507 (2013).

• XQCD-poster of Pietro Giudice, ‘Thermodynamics of Dense 2-Color Matter‘.

• Boz, Cotter, LF, Mehta, Skullerud, Eur. Phys. J. A49 (2013) 87. 

• Skullerud, PoS QCD-TNT09 (2009) 043; Nucl. Phys. A820 (2009) 175C-178C.



simulational details

• Wilson gauge action with 2 flavours of unimproved Wilson fermion
• diquark source j to lift low-lying eigenmodes,  ‘physical‘ limit  j➝0
• 𝛽 = 1.9,     𝜅 = 0.168,     a = 0.178(6) fm,     m𝜋 = 717(25) MeV,     m𝜋 / m𝜌 ≈ 0.8

• ja = 0.02–0.05
• most simulations on 123x24
• μa = 0.25–1.1

• for thermal aspects:  163xN𝜏 ,  with  N𝜏 = 4–20,   μa = 0.35–.6

• for details see
Cotter, Giudice, Hands, Skullerud, Phys. Rev. D87, 034507 (2013).
Boz, Cotter, LF, Mehta, Skullerud, Eur. Phys. J. A49 (2013) 87.



phase transitions:   superfluid to normal transition

• order parameter for superfluidity:
    diquark condensate

• linear extrapolation to j➝0 has large uncertainties
• clear transition from superfluid phase <qq> ≠ 0

    to normal phase <qq> = 0
• expected 2nd order phase transition   (3d XY-model)

    but not enough data to determine order properly
• phase transition temperature Ts from inflection 

point of <qq>, linear extrapolation to j➝04 Tamer Boz et al.: Phase transitions in 2-colour matter

aµ 0.35 0.40 0.50 0.60
aTs(0.04) 0.121(6) 0.108(2) 0.111(5) 0.102(6)
aTs(0.02) 0.097(16) 0.096(5) 0.097(2) 0.093(5)

aTs 0.073(24) 0.084(8) 0.083(5) 0.083(6)
Ts (MeV) 82(27) 94(9) 93(6) 93(7)

Table 2. Inflection points Ts(j) for 〈qq〉(T ) at ja = 0.04, 0.02
and critical temperature Ts obtained from extrapolating Ts(j)
to j = 0. The uncertainties are estimates of the systematic
uncertainty in determining the inflection points and in the j →
0 extrapolation.

3.2 Deconfinement transition

The Polyakov loop 〈L〉 serves as the traditional order pa-
rameter for deconfinement in gauge theories, with 〈L〉 #= 0
signalling the transition to a deconfined phase. Strictly
speaking, 〈L〉 is never zero in a theory with dynamical
fermions, but it typically increases with temperature from
a very small value in a fairly narrow region, which may be
identified with the deconfinement transition region.

We will here take the pragmatic view in which QC2D,
like QCD, is considered to be confining at low T and µ.
This is also reflected in the behaviour of the static quark
potential, which will be studied in the following section:
it rises linearly at intermediate distances, before string
breaking sets in.

Unlike the diquark condensate, the renormalisation of
the Polyakov loop does depend on temperature; specifi-
cally, the relation between the bare Polyakov loop L0 and
the renormalised Polyakov loop LR is given by

LR(T, µ) = ZNτ
L L0(

1

aNτ
, µ) . (2)

In order to investigate the sensitivity of our results to
the renormalisation scheme, we have used two different
conditions to determine the constant ZL,

Scheme A LR(T =
1

4a
, µ = 0) = 1 ,

Scheme B LR(T =
1

4a
, µ = 0) = 0.5 .

Scheme A is the scheme that was already used in [7]. Fig-
ure 2 shows 〈L〉 evaluated in both schemes, as a function
of temperature. The Scheme B data have been multiplied
by 2 to ease the comparison with the Scheme A data. Also
shown are cubic spline interpolations of the data and the
derivative of these interpolations, with solid lines corre-
sponding to Scheme A and dotted lines to Scheme B.

At all µ, we see a transition from a low-temperature
confined region to a high-temperature deconfined region.
In contrast to the diquark condensate, we see a clear, sys-
tematic shift in the transition region towards lower tem-
peratures as the chemical potential increases. For all four
µ-values, the Polyakov loop shows a nearly linear rise as
a function of temperature in a broad region, suggesting
that the transition is a smooth crossover rather than a
true phase transition. This is reinforced by the difference

µa Tda Td (MeV)
0.0 0.193(20) 217(23)
0.35 0.140–0.220 157–247
0.40 0.108–0.200 121–225
0.50 0.080–0.200 90–225
0.60 0.060–0.135 67–152

Table 3. Estimates for the deconfinement crossover tempera-
ture Td from the Polyakov loop at ja = 0.04. The µ = 0 result
is taken from [7].

between Scheme A and Scheme B, with the crossover oc-
curing at higher temperatures in Scheme B. At µ = 0,
the difference between the two schemes is small, but in-
creases with increasing µ, suggesting a broadening of the
crossover.

Because of the smaller value of ZL, our results for
Scheme B are considerably less noisy than those for Scheme
A. For this reason, we choose to define the crossover re-
gion to be centred on the inflection point from Scheme
B, with a width chosen such that it also encompasses the
onset of the linear region from Scheme A. Our summary
of transition temperatures taken from the ja = 0.04 data
is given in table 3. From Fig. 2 we see that at low T , the
value of 〈L〉 increases as j is reduced, and at µa = 0.6, the
crossover region will most likely move to smaller T in the
j → 0 limit. However, we do not have sufficient statistics
for ja = 0.02 at low T to make any quantitative statement
about this.

4 Static quark potential

The potential between two static quarks (or a quark–
antiquark pair), and in particular its asymptotic behaviour
at large separations, has traditionally been taken as the
tell-tale indicator, or even definition, of confinement of
quarks [59]. A linearly rising potential has been observed
in numerous lattice simulations, and has also formed the
basis of successful phenomenological descriptions of bound
states of heavy quarks. In QCD with dynamical quarks,
the string will break at a finite distance, but at interme-
diate distances a linear rise can still be observed.

At high temperature, the potential is expected to ex-
hibit Debye screening, and this has been observed in nu-
merous calculations of the quark–antiquark free energy us-
ing Polyakov loop correlators. However, it is not yet clear
how this quantity relates to the (complex) potential that
appears in effective theories of heavy quarkonia at high
temperature [60,61,62,63]. Very recently, the static quark
potential has also been determined from Wilson loops at
high temperature [64]; this does not show any screening
for T ! Tc.

There has also been some recent progress in determin-
ing the potential between heavy (finite mass) quarks at
zero [65] and non-zero [66] temperature. Some properties
of bound states of heavy quarks in QC2D at nonzero tem-
perature and density were reported in [67]; a potential
model description should reproduce these results. Here we

hqqi = h 2trC�5⌧2 
1 �  ̄1C�5⌧2 ̄

2tri
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• ‘order parameter‘ for deconfinement:      
     exp. value of Polyakov loop <L>

• crossover at all μ

• renormalisation of <L> is T-dependent
• crossover temperature Td 

    from inflection point (in scheme B)

• Td decreases as μ increases

phase transitions:   deconfinement transition
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• linear rising potential indicates confinement
• string breaking if quarks dynamical, 

    but intermediate region with linear rise
• high T: Debye screening expected
• data obtained from fitted Wilson loop

• superfluid region (aμ≈0.5):
    potential flatter than μ=0=j

• deconfinement region (aμ=0.9)
    potential consistent with μ=0
• pattern consistent with previous findings

static quark potential

123x24, aj=0.04 

W (r, ⌧) ⇠ exp (�V (r)⌧)

Hands, Kim, Skullerud, Eur. Phys. J. C48, 193 (2006).



• quantify variation with μ via fits
• (standard) Cornell potential

• add exponential term (allow for screening)

• σ const for low μ, increases for high μ

• exponential term insensitive to μ but non-zero,
    no interpretation as screening mass
• possible explanations

• medium with long-range interactions
• screening not seen in Wilson loop
• large lattice artefacts for large μ

V (r) = C(µ, j) + �(µ, j)r +
↵(µ, j)

r

V (r) = C(µ, j) +
�(µ, j)r

B(µ, j)
e�Br +

↵(µ, j)

r

static quark potential

123x24

123x24

123x24



• study effects of T and μ: guideline for full QCD (?) 
• (minimal) Landau gauge: only transverse mode(s), 

    chromomagnetic DM  and -electric DE  modes

• seperately depends on 
     spatial momentum qs and Matsubara modes q0

• small volume dependence on lattices used

gluon propagator

Dµ⌫ = PM
µ⌫ DM (qs, q0) + PE

µ⌫ DE(qs, q0)

T=0



• mild enhancement at intermediate μ,   ←  in superfluid, confined phase

• suppression at high μ,   ←  in deconfined phase

gluon propagator  –  μ-dependence

magnetic, 0th mode

magnetic, 1st mode

electric, 0th mode

electric, 1st mode



gluon propagator  –  μ-dep. at high temperature

at high temperatures  (163 x 8 lattice)
• DM has enhancement for intermediate/large μ for small/large momenta
• DE suppressed

electric, 0th mode

163x8163x8

magnetic, 0th mode



gluon propagator  –  thermal dependence

zero modes:
• DM hardly feels temperature for low and intermediate T
• DE suppressed with temperature

magnetic, 0th mode

μa = 0.5, ja = 0.04

higher modes:

electric, 0th mode

μa = 0.5, ja = 0.04

163xN𝜏163xN𝜏

163xN𝜏163xN𝜏



• 3 parameter (multi-mode) fit for the propagator
       

• 𝛬 fixed in the vacuum: a𝛬=0.999(3)

• aM/E and bM/E  are T- & μ-dependent

• 𝝌2/d.o.f. ≲10

• no significant j-dependence

gluon propagator  –  fits

Dfit
M/E(q

2) =
⇤2

(q2 + ⇤2)2
�
q2 + ⇤2aM/E

��bM/E

163x24, μa = 0.5, ja = 0.04



T-dependence μ-dependence

163xN𝜏, μa = 0.5, ja = 0.04

ja = 0.04

ja = 0.04

gluon propagator  –  fits



• 2-colour, 2-flavour QCD at T & mu
• superfluid to normal transition 

• at 0.35 ≲ aμ ≲ 0.6 (μ =385-665MeV),
• Ts constant in μ
• second order (?)

• deconfinement transition
• (broad) crossover
• Td decreases, crossover broadens when μ increases

• static quark potential
• at most weakly screened at intermediate μ
• dense but deconfined medium not (ordinary) QGP (?)

• chromomagnetic and chromoelectric gluon propagators
• electric: strongly screened at increasing μ and T
• magnetic: mildly enhanced/suppressed for intermediate/large μ, little sensitivity to T

• phase diagram
• at least three phases: hadronic, quarkyonic, QGP
• possible deconfined and superfluid phase

summary



outlook

• smaller lattice spacings, controlled extrapolation to cont. limit, identify lattice artefacts

• lack of screening (or even antiscreening) in static quark potential  ⤳   exotic phase ?

• gluon and quark propagators

• compare lattice results with functional methods


