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QCD and isospin density

• Why isospin density/chemical potential?

• Physically occurring dense matter has µu ≠ µd

• Neutron matter (n-stars): NI ~ NB/3

• Heavy ion collisions (eg Pb-Pb): NI ~ NB/5

• Theoretically interesting

• New phase structures to investigate

• Relations to other theories 
at large Nc [Cherman et al. PRL 2011, Hanada eta l. PRD2012]

• Useful test laboratory

• Computationally possible with current methods



QCD at nonzero µI

• Two-flavour QCD with nonzero quark chemical potential

• Isospin chemical potential sets µ = µu = - µd 

• After integrating the quark d.o.f, the QCD partition function 
has positive definite measure (assuming mu=md)

• Importance sampling can be used in this theory

• Equivalent to phase quenched QCD

D(µf ) = Dµ�µ + mf + µf�0

LQCD =
X

f=u,d

 fD(µf ) f + LYM

ZQCD =
Z
DA det[D(µ)] det[D(�µ)]e�SY M

det[D(µ)] det[D(�µ)] = det[D(µ)] det[D(µ)†]

= | det[D(µ)]|2



Low energy effective theory

• Effective theory for small µI is chiral perturbation theory

• Constructed by Son & Stephanov [Phys. Rev. Lett. 86, 592 (2001)]

• Minimize effective potential to get ground state (at LO)

• SU(3), RMT/Epsilon regime [Toublan, Kogut, Splittorff, Verbaarschot ....] 

• Inclusion of baryons [Cohen et al, Bedaque et al.] 

µI , appears as the time-component of a uniform gauge field. The term proportional to ε is
an explicit isospin breaking term. It is included here because the spontaneous breaking of
isospin is an essential part of our analysis. Because symmetries do not break spontaneously
at finite volumes, a small explicit breaking is necessary. This explicit breaking should go to
zero as the size of the lattice goes to infinity.1

For vanishing quark masses, m = 0, and vanishing external sources, µI = ε = 0, the QCD
action has an SU(2)L ⊗ SU(2)R symmetry that is spontaneously broken down to SU(2)V .
For non-vanishing chemical potential, the QCD action has only a U(1)L ⊗U(1)R symmetry
associated with I3. This will be broken down to U(1)V by both spontaneous chiral symmetry
breaking and the explicit symmetry breaking introduced by the quark mass. At finite µI and
finite ε, the only continuous symmetry of L is the U(1)B associated with baryon number.2

We can write down an effective field theory of QCD that takes into account this pattern of
spontaneous and explicit symmetry breaking. This effective theory is χPT, which is written
in terms of the coset U ∈ SU(2)L ⊗ SU(2)R/SU(2)V , and at leading order has the form

L =
f 2

8

[

< DµUDµU † > +2λ < M †U + U †M >
]

. (3)

Here the angled brackets denote flavor traces, and the external sources have been included
in the terms

M = s + ip,

DµU = ∂µU + i[Vµ, U ], (4)

where the external vector potential is given by: Vµ = µI
τ3

2 δµ,0, the pseusdoscalar source is

given by: p = ε τ2

2 , and the scalar source is just the quark mass, s = mq.
The isospin chemical potential favors the presence of up quarks as opposed to down

quarks. When it is larger than about mπ, it becomes energetically favorable for the ground
state to contain positive pions. Indeed, assuming a uniform value U0 for the vacuum ex-
pectation value of U(x), we can minimize the effective potential to determine the vacuum
(ground) state. Using the standard parametrization of SU(2), namely U0 = exp[iαn · τ ],
with n · n = 1, we find

U0 =

{

1, |µI | < mπ,

exp[iα τ 2], |µI | > mπ

. (5)

1 In Euclidean space, the action can be written in the form SE = ψ(D + mq)ψ, where

D = D/ + µIγ4
τ3

2
+ iεγ5

τ2

2
. (2)

The Dirac operator D satisfies the condition τ1γ5 D τ1γ5 = D†, which ensures that the product of u and

d fermionic determinants is positive.
2 With both µI and ε non-vanishing there is no symmetry that prevents their renormalization. These

parameters are only multiplicatively renormalized because, for example, the isospin chemical potential is

the only term in the action that breaks C ⊗ τ3, and the explicit isospin breaking term is the only term in

the action that breaks parity. Furthermore because we are interested in the limit of small ε, the action will

be approximately symmetric under the U(1)V associated with τ3. Consequently µI cannot be appreciably

renormalized.
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The angle α is determined, at lowest order in the chiral expansion, by the transcendental
equation

cosα =
m2

π

µ2
I

−
λε

µ2
I

cotα, (6)

where the pion mass satisfies the Gell-Mann–Oakes–Renner relation, m2
π = 2λm. For small

values of ε, one can determine α using a perturbative expansion of Eq. (6). This expansion,
however, breaks down as one nears the critical value of the chemical potential from above.
In the condensed phase, the condensates have values

〈ψψ〉 = f 2λ cosα,

i〈ψτ 2γ5ψ〉 = f 2λ sinα. (7)

III. BARYONS IN AN ISOSPIN CHEMICAL POTENTIAL: SU(2)

When a hadron propagates in the background of a pion condensate its properties are
changed due to the interactions of the hadron with the pions in the condensate. Their mass,
for instance, is shifted by an amount closely related to the forward scattering amplitude of
pions on the hadron. Unfortunately, the pions in the condensate are not exactly on-shell
and no model independent relation can be found between pion-hadron scattering amplitudes
and the mass shift. However, the chiral expansion of these two quantities are be related in
the way described in this section.

A. Nucleons

We can address effects of the isospin chemical potential on nucleons by using the heavy
nucleon chiral Lagrangian [32]. This effective theory accounts for spontaneous and explicit
chiral symmetry breaking in the nucleon sector. The theory is written in terms of static
nucleon fields, and thereby the nucleon mass can be treated commensurately with the chiral
symmetry breaking scale.

The leading-order heavy nucleon chiral Lagrangian is written in terms of the nucleon
doublet, N = (p, n)T , and has the form

L(1) = N † (iv · D + 2gAS · A) N. (8)

The vector vµ is the nucleon four-velocity, while the vector, Vµ, and axial-vector, Aµ, fields
of pions are defined by

Vµ =
1

2

(

ξ†LDL
µξL + ξRDR

µ ξ
†
R

)

,

Aµ =
i

2

(

ξ†LDL
µξL − ξRDR

µ ξ
†
R

)

. (9)

The former appears in the chirally covariant derivative Dµ, which has the following action
on the nucleon field

(DµN)i = ∂µNi + (Vµ)i
jNj. (10)

Appearing in the vector and axial-vector pion fields are ξL, and ξR which arise from the
definition U = ξLξR. Under a chiral transformation, (L, R) ∈ SU(2)L ⊗ SU(2)R, the pion
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M = mq + ✏ ⌧2/2

The angle α is determined, at lowest order in the chiral expansion, by the transcendental
equation

cosα =
m2

π

µ2
I

−
λε

µ2
I

cotα, (6)

where the pion mass satisfies the Gell-Mann–Oakes–Renner relation, m2
π = 2λm. For small

values of ε, one can determine α using a perturbative expansion of Eq. (6). This expansion,
however, breaks down as one nears the critical value of the chemical potential from above.
In the condensed phase, the condensates have values

〈ψψ〉 = f 2λ cosα,

i〈ψτ 2γ5ψ〉 = f 2λ sinα. (7)

III. BARYONS IN AN ISOSPIN CHEMICAL POTENTIAL: SU(2)

When a hadron propagates in the background of a pion condensate its properties are
changed due to the interactions of the hadron with the pions in the condensate. Their mass,
for instance, is shifted by an amount closely related to the forward scattering amplitude of
pions on the hadron. Unfortunately, the pions in the condensate are not exactly on-shell
and no model independent relation can be found between pion-hadron scattering amplitudes
and the mass shift. However, the chiral expansion of these two quantities are be related in
the way described in this section.

A. Nucleons

We can address effects of the isospin chemical potential on nucleons by using the heavy
nucleon chiral Lagrangian [32]. This effective theory accounts for spontaneous and explicit
chiral symmetry breaking in the nucleon sector. The theory is written in terms of static
nucleon fields, and thereby the nucleon mass can be treated commensurately with the chiral
symmetry breaking scale.

The leading-order heavy nucleon chiral Lagrangian is written in terms of the nucleon
doublet, N = (p, n)T , and has the form

L(1) = N † (iv · D + 2gAS · A) N. (8)

The vector vµ is the nucleon four-velocity, while the vector, Vµ, and axial-vector, Aµ, fields
of pions are defined by

Vµ =
1

2

(

ξ†LDL
µξL + ξRDR

µ ξ
†
R

)

,

Aµ =
i

2

(

ξ†LDL
µξL − ξRDR

µ ξ
†
R

)

. (9)

The former appears in the chirally covariant derivative Dµ, which has the following action
on the nucleon field

(DµN)i = ∂µNi + (Vµ)i
jNj. (10)

Appearing in the vector and axial-vector pion fields are ξL, and ξR which arise from the
definition U = ξLξR. Under a chiral transformation, (L, R) ∈ SU(2)L ⊗ SU(2)R, the pion

4



High isospin density

• Asymptotic freedom guarantees weak interactions as chemical 
potentials becomes large

• Attractive OGE in uΓd channels

• Non-perturbative effects favour condensation in uγ5d channel 
leading to a superconducting (BCS) condensate

• (QCD inequalities require PS channel to condense first)

• Likely that the BEC to BCS transition is a smooth crossover

_

_

[Son & Stephanov Phys. Rev. Lett. 86, 592 (2001)]



Phase Diagram

• Conjectured phase diagram [Son & Stephanov]

• NB: equivalent to phase quenched QCD

<u    d>=0γ5

<u    d>=0γ5π<     >=0

mπ

T

|µ  |I

A

FIG. 1. Phase diagram of QCD at finite isospin density.

At sufficiently high temperature the condensate (9)
melts (solid line in Fig. 1). For large µI , this critical
temperature is proportional to the BCS gap (10). There
are two phases which differ by symmetry: the high tem-
perature phase, where the explicit flavor U(1)L+R sym-
metry is restored, and the low-temperature phase, where
this symmetry is spontaneously broken. The phase tran-
sition is in the O(2) universality class [16]. The critical
temperature Tc vanishes at µI = mπ and is an increasing
function of µI in both regimes we studied: |µI | ! mρ

and |µI | " ΛQCD. Thus, it is likely that Tc(µI) is a
monotonous function of µI . In addition, at large µI ,
there is a first order deconfinement phase transition at
T ′

c much lower than Tc(µI). Since there is no phase tran-
sition at µI = 0 (for small mu,d) or at T = 0 (assuming
quark-hadron continuity), this first-order line must end
at some point A on the (T, µI) plane (Fig. 1). The exact
location of A should be determined by lattice calcula-
tions; one of the possibilities is drawn in Fig. 1.

The (µI , µB) phase diagram.—This phase diagram de-
serves a separate study. Here we shall only consider the
regime |µI | " µB (the opposite limit µB " |µI | was con-
sidered in Ref. [17]). Finite µB provides a mismatch be-
tween ū and d Fermi spheres, which makes the supercon-
ducting state unfavorable at some value of µB of order ∆.
It is known [18] that the destruction of this state occurs
through two phase transitions: one at µB slightly below
∆/

√
2 and another at µB = 0.754∆. The ground state

between the two phase transitions is the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) state [18], characterized by
a spatially modulated superfluid order parameter 〈ūγ5d〉
with a wavenumber of order 2µB. The FFLO state has
the same symmetries as the inhomogeneous pion con-
densation state which might form in electrically neutral
nuclear matter at high densities [19]. It is conceivable
that the two phases are actually one, i.e., continuously
connected on the (µI , µB) phase diagram.

The authors thank L. McLerran, J. Kogut, R. Pisarski,
and E. Shuryak for discussions, the DOE Institute for
Nuclear Theory at the University of Washington for its
hospitality, and K. Rajagopal for drawing their attention
to Ref. [18].
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At sufficiently high temperature the condensate (9)
melts (solid line in Fig. 1). For large µI , this critical
temperature is proportional to the BCS gap (10). There
are two phases which differ by symmetry: the high tem-
perature phase, where the explicit flavor U(1)L+R sym-
metry is restored, and the low-temperature phase, where
this symmetry is spontaneously broken. The phase tran-
sition is in the O(2) universality class [16]. The critical
temperature Tc vanishes at µI = mπ and is an increasing
function of µI in both regimes we studied: |µI | ! mρ

and |µI | " ΛQCD. Thus, it is likely that Tc(µI) is a
monotonous function of µI . In addition, at large µI ,
there is a first order deconfinement phase transition at
T ′

c much lower than Tc(µI). Since there is no phase tran-
sition at µI = 0 (for small mu,d) or at T = 0 (assuming
quark-hadron continuity), this first-order line must end
at some point A on the (T, µI) plane (Fig. 1). The exact
location of A should be determined by lattice calcula-
tions; one of the possibilities is drawn in Fig. 1.

The (µI , µB) phase diagram.—This phase diagram de-
serves a separate study. Here we shall only consider the
regime |µI | " µB (the opposite limit µB " |µI | was con-
sidered in Ref. [17]). Finite µB provides a mismatch be-
tween ū and d Fermi spheres, which makes the supercon-
ducting state unfavorable at some value of µB of order ∆.
It is known [18] that the destruction of this state occurs
through two phase transitions: one at µB slightly below
∆/

√
2 and another at µB = 0.754∆. The ground state

between the two phase transitions is the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) state [18], characterized by
a spatially modulated superfluid order parameter 〈ūγ5d〉
with a wavenumber of order 2µB. The FFLO state has
the same symmetries as the inhomogeneous pion con-
densation state which might form in electrically neutral
nuclear matter at high densities [19]. It is conceivable
that the two phases are actually one, i.e., continuously
connected on the (µI , µB) phase diagram.
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LQCD studies

• Kogut & Sinclair [PRD 66 (2002) 014508; PRD 66 (2002) 
034505; PRD 70 (2004) 094501; PRD 77 (2008) 114503]

• Staggered quarks

• µ implemented by scaling forward/
backward temporal links [f(x)=ex]

• Pion condensation consistent with 
occurring at µI=mπ 

• Demonstrated existence of phase 
transition - melting of condensate at 
high T above µI,crit 

FIG. 1: Charged pion condensate as a function of µI for λ = 0.0025, λ = 0.005 and λ −→ 0. The

curves are fits of the finite λ measurements to the scaling forms defined in the text.

The form for the equation of state suggested by the lowest order tree-level analysis

of effective Lagrangians of the non-linear sigma model type [2] is given in terms of α which

minimizes the effective potential

E = −a µ2 sin2(α) − b m cos(α) − b λ sin(α) (14)

in terms of which

i〈ψ̄γ5τ2ψ〉 = b sin(α) (15)

〈ψ̄ψ〉 = b cos(α) (16)

7

by interpolating the ‘data’ of figure 3 and performing the relevant integrals analytically or

numerically.

FIG. 4: Pion condensates as functions of µI for λ = 0.005, λ = 0.01 and a linear extrapolation to

λ = 0.0. The lines are the tricritical fit described in the text.

We performed similar simulations at the same coupling β = 5.2 and mass m = 0.05 at

λ = 0.005 and λ = 0.01. Here we concentrated on the neighbourhood of the phase transition

and used more closely spaced (in µI) points with somewhat lower statistics. For µI
>∼ µc we

find acceptable fits of the pion condensate to to both the non-linear sigma model scaling form

and to the tricritical scaling form (34% and 40% respectively). The fit to non-linear sigma

model effective Lagrangian scaling (equation 15) enables one to extend this to low µI . A fit

12

FIG. 13: a) Wilson Line as a function of β at µI = 0.8 on a 163 × 4 lattice. b) Charged pion

condensate as a function of β at µI = 0.8 on a 163 × 4 lattice.

23

12.2 Introduction of the chemical potential 315

This is divergent in the continuum limit and thus simply adding the term
(12.24) in the action does not give rise to a proper discretization of the chem-
ical potential.

Closer inspection of the continuum situation (cf. [44–46]) clarifies the prob-
lem. The quark number is the conserved charge of the U(1) global symmetry.
Determining the Noether current for the lattice action gives the current ex-
pressed by nearest neighbor terms. The space integral then produces a suitable
form of the chemical potential term. One therefore implements the chemical
potential by replacing the temporal hopping term in (5.51) with

− 1
2a

∑

n∈Λ

(
f(aµ)(1− γ4)αβU4(n)abδn+4̂,m

+f(aµ)−1(1 + γ4)αβU4(n − 4̂)†abδn−4̂,m

)
,

(12.37)

where f(aµ) is a real function not yet specified.
For µ = 0 the original action should be recovered, thus we request f(0) = 1.

In an expansion in µ the next term should be linear in the chemical potential
in order to reproduce the density term. We therefore have f(aµ) = 1 + aµ +
O(aµ)2. Time reflection invariance (cf. Sect. 5.4) requires f(aµ) = 1/f(−aµ).
The simplest choice fulfilling all these conditions is

f(aµ) = exp(aµ) . (12.38)

In this formulation the propagation forward in time is favored by a factor of
exp(aµ), whereas propagation backward in time is disfavored by exp(−aµ).
This introduces the desired particle–antiparticle asymmetry.

In Sect. 5.3.1 we have shown that the hopping expansion expresses the
fermion determinant as a sum over closed loops. In such a loop the forward
hopping factors f(aµ) and the backward hopping factors f(aµ)−1 cancel unless
the loop winds nontrivially around the compact time direction. The total
contribution of the chemical potential then is f(aµ)wNT , where w ∈ Z denotes
the number of windings of the loop.

Based on that observation, we note that in a simulation instead of modi-
fying all link terms in time direction one may also modify just all forward
time-directed hopping terms in only a single time slice with the factor

f(aµ)NT = exp(aµNT ) = exp(µ/T ) , (12.39)

and the corresponding backward-oriented terms with the inverse factor. Like
in (12.20) we find that the chemical potential always enters in the form µ/T .

The introduction of the chemical potential comes with a serious technical
drawback: For aµ #= 0 the Dirac operator is no longer γ5-hermitian. It is easy
to see that multiplying the hopping term (12.37) with γ5 from the left and the
right changes the sign of γ4; hermitian conjugation then exchanges U and U†

and we find instead of the γ5-hermiticity relation (5.76) the modified equation



LQCD studies

• de Forcrand, Stephanov & Wenger 
[PoS LATT2007 237] 

• Investigated using 2 staggered 
fermions and re-weighting from 6 
values of µI to get precise mapping

• Determine critical µI from Maxwell 
construction in free energy

• Also investigate pion susceptibility – 
restoration of U(1) going from BEC 
phase to plasma phase

On the phase diagram of QCD at finite isospin density Urs Wenger
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Figure 2: Phase diagram in the (µI/T,T/Tc)-plane from grand-canonical Monte-Carlo simulations (GCMC)
at finite isospin chemical potential. The red circle indicates the critical point as inferred from the change
of the behaviour of the Binder cumulants (shown in the inset for the quark condensate) at µI/T ! 2.5. The
green circle indicates the transition into the pion condensed phase (BEC) as obtained from the canonical
analysis.

chemical potential. Here, the critical µI can be determined using the Maxwell construction and
it increases as the temperature is decreased. Furthermore, the S-shape becomes smoother and
finally disappears at around T/Tc ! 0.8 where the jump in the density vanishes and the first order
transition is replaced by a crossover. In order to ascertain the presence of this critical point, we also
monitor the distributions of the plaquette, the Polyakov loop, the quark condensate and density by
measuring the corresponding Binder cumulants in grand-canonical simulations at fixed µI . These
cumulants remain essentially constant in the region 0 ≤ µI/T ≤ 2 beyond which they start to grow
linearly, cf. inset in Fig. 2. Attributing this behaviour to the critical point of the 3d Ising model
universality class one can locate the point at µI/T ! 2.5. A finite-size scaling analysis and a
continuum extrapolation are of course required to locate this critical point reliably, in particular,
to disentangle it from the 2nd order BEC transition. Our findings are similar to those of Ref. [3],
which for Nf = 3 also find that the Binder cumulant grows as an isospin chemical potential is on.

Lowering the temperature further, we observe a transition from the pion gas into the Bose
condensed phase, marked by a circle in Fig. 1 (right). It turns out that the system can very well be
described by the ansatz in eq. (2.6) where the value of mπ is fixed from our measurement at zero
temperature and fπ is treated as a free parameter.

The full phase diagram in the (µI/T,T/Tc)-plane is presented in Fig. 2 where the black circles
denote our results from the grand-canonical Monte-Carlo simulations (GCMC) and the red circle
marks the critical point. For µI ≤ mπ the pseudo-critical line between the hadronic gas and the
plasma can be well described by a quartic fit (dashed line). The green point marks the entry into
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Figure 3: Left: Pion susceptibility χπ+ for various values of µI . Right: Data collapse obtained from shifting
β to βc and rescaling both the x− and y−axis. Also shown is the universal function from simulations of the
3d XY -model.

the pion condensation phase obtained from Fig. 1 (right). As expected, for T > 0 this point is shifted
towards larger values of µI as compared to the zero temperature situation where the transition would
occur exactly at µI/T = mπ/T (indicated by the small arrow on the x-axis).

The transition from the plasma to the pion condensation phase can be determined by moni-
toring the pion susceptibility χπ+ = ∑x〈π

+(0)π+(x)〉. Since this transition is characterised by the
breaking of a U(1) symmetry, it is expected to belong to the universality class of the 3d XY -model.
We can expose the universal behaviour of the transition by comparing the data at different values
of µI with the universal scaling curve obtained from simulations of the 3d XY -model. Fig. 3 shows
that the agreement is excellent.

Finally, our calculation also provides a crosscheck of the reweighting method from zero to
finite (isospin or baryonic) chemical potential. It turns out that for isospin chemical potential
reweighting from µI = 0 is possible, but fails to describe the phase diagram reliably. The overlap
of the µI = 0 ensembles with the ones relevant at finite density is not sufficient to determine e.g. the
order of the phase transition at finite µI , and the extrapolation to finite µI noticeably underestimates
the density of the system. This is understandable from the fact that one tries to extract finite density
information from the tail of a density distribution which is generated at µI = 0, i.e. centered at zero.

For an extrapolation to finite baryonic density one has the additional problem that the average
sign of the fermionic determinant tends to zero very quickly with µ , as illustrated in Fig. 4, hence
narrowing the range of applicability of the reweighting procedure even further.

4. Conclusions

We determined the EoS and the phase diagram of Nf = 4 + 4 QCD at finite isospin density
and finite temperature. The two mechanisms at work are clearly exposed: we observe Bose con-
densation of pions at high density and deconfinement at high temperature. For our quark mass,
the transition from the hadronic gas to the quark-gluon plasma is first order at zero density. As the
density is increased, the transition appears to turn into a crossover at µI/T $ 2.5, in qualitative sim-

6

On the phase diagram of QCD at finite isospin density Urs Wenger

The interaction leads to an increase of the free energy difference at a given density and temperature
as sketched in Fig. 1.

In the high temperature deconfined phase and for quark mass mq ! µI the pressure can be
approximated by that of a massless, free Fermi gas, leading to

ρI
T 3

= µ̂I +
1
π2

µ̂I3 . (2.7)

The corresponding situation is sketched in Fig. 1.

3. Numerical results

For computational convenience we consider in our numerical simulations two staggered fermion
fields corresponding to Nf = 8 QCD in the continuum, i.e. four u- and four d−quark species, all
degenerate in mass. We keep the lattice volume fixed to 83× 4 as well as the bare quark mass
am= 0.14 while varying the bare coupling β and the isospin chemical potential aµI . Note that the
bare quark mass is tuned in such a way that the deconfinement transition at Tc and zero density is
first order. Varying β changes the lattice spacing a and thereby the temperature T = 1

4a and we
cover a range of temperatures between 1

2Tc ! T ! Tc. We emphasise that for the range of couplings
we consider, the pion mass amπ , measured at zero temperature, changes very little in units of the
lattice spacing, so that the ratio mπ/T stays almost constant. Note that, contrary to Refs. [2, 3, 4],
we do not introduce a U(1)-breaking source term in our action. Thus, we can observe the spon-
taneous symmetry breaking characteristic of Bose condensation without performing any delicate
extrapolation. Finally, our results are obtained by combining 68 ensembles at six values of µI up
to µI/T ! 5 with Ferrenberg-Swendsen reweighting.

The free energy is obtained from the canonical partition function, F(Q) = −1/T logZC(Q).
ZC(Q) is estimated using standard grand canonical Monte Carlo simulations

ZC(Q)

ZGC(µI)
=

〈

| ˆdetQ|2

|detD(µI)|2

〉

ZGC
(3.1)

where ˆdetQ is obtained by decomposing exactly the part of the measure which depends on µI [5, 6],
i.e., the fermion determinant,

detD(µI) =
+3V

∑
Q=−3V

ˆdetQ exp(QµI/T ) . (3.2)

Our results for the free energy difference eq. (2.4) (in units of T ) versus the number of u-quarks
Q for successive temperatures together with the theoretical expectations are shown in Fig. 1 right.
At high temperature (lowest curve) our data is very well described by an ansatz motivated by
the free Fermi gas description, eq. (2.7), where the coefficients for the linear and cubic term are
multiplied by factors that take into account effects of interactions. The numerical values we obtain
are reasonably close to one and consistent with those obtained in [7].

Decreasing the temperature successively, we obtain the second-, third-, ... to-lowest curves.
The S-shape of the curves for T ≤ Tc indicates that ρI(µI) is multivalued, and is thus characteristic
of a first order transition – in the thermodynamic limit the density would jump at the critical isospin
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• Isospin used to test convergence of extrapolations for 
imaginary chemical  potential [Cea et al.1210.5896] 

• Pseudo-critical coupling from peak of PL susceptibility

Two-flavor QCD at finite quark or isospin density L. Cosmai
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Figure 2: (Left) Fit to the pseudo critical couplings in finite isospin SU(3) with n f = 2 according to the
"physical" fit Eq. (2.3). (Right) Extrapolation to real isospin chemical potentials of the sixth-order con-
strained, ratio fourth to second-order polynomials and "physical" fits (only the border of the 95% CL band
have been reported). Data points (circles) are the results of Monte Carlo simulations performed directly at
real isospin chemical potential.

Let us move now to the nonzero quark chemical potential simulations. In this case the sign
problem prevents us to perform simulations at real values of the quark chemical potential. In fig. 3
(left) we can see that the ratio (4,2) interpolation used in the case of isospin chemical potential is
well suited here too, giving a χ2/d.o.f. = 0.60. If we tried a linear fit (in µ2) we got a largely
unsatisfactory χ2/d.o.f. = 2.87. As for the isospin chemical potential we also tried the "physical"
fit (Eq. (2.3) to the imaginary quark chemical potential data. The result, as shown in fig. 3 (right), is
good also in the present case (χ2/d.o.f.= 0.51). Assuming that it is possible to extrapolate down to
T = 0 the relation Tc(µ)/Tc(0) versus µ (Eq. (2.3), we get the following estimate for the chemical
quark potential at zero temperature:

µc(T = 0) =
√

C
B
Tc(0) = 3.284(65)Tc(0) , (2.4)

to be compared with µc(T = 0) = 2.73(58)Tc(0) of ref. [10] with nf = 2 Wilson fermions. In
fig. 4 the extrapolations at real values of the quark chemical potential starting from three different
successful interpolating functions at imaginary chemical potential values are compared. The three
analytic continuations begin to deviates at µ/(πT ) > 0.1. However two of these extrapolations
(in particular the ratio of polynomials and the "physical" fit) continue to be in good agreement.
Moreover we observe that in the case of isospin chemical potential the ratio of polynomials is pre-
ferred, but we cannot claim this is the interpolation to use for analytic continuation since systematic
differences between finite quark density and finite isospin QCD cannot be excluded.

3. The curvatures of the critical lines

To obtain the curvatures of the critical line at µ = 0 ((dβc(µ2)/dµ2)|µ=0) for isospin and
quark chemical potentials respectively, we tried a common fit to all data we have collected for the
critical couplings at quark chemical potential and isospin chemical potential (in the latter case we

4

[Cea, Cosmai, d’Elia, Papa & Sanfillipo Phys. Rev. D85 094512, 2012; PoS LATT12]

Nf=2 staggered
mpi ~ 400 MeV
163x4 lattices



New Study @ Lattice2013

• Investigated Wilson formulation using 
explicit source term

• Relatively small volumes (43x8)

• Charged pions split

• Looked for rho condensation, perhaps 
needs larger µI, smaller mπ/mρ

• Explicit rotational breaking?

[C Nonaka and M Kondo, Lattice2013]
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Dirac Operator Spectrum

• Recent study of Dirac operator 
spectrum at µI ≠ 0

• Pion condensation signaled by 
eigenvalues approaching zero

• 1000 low eigenmodes extracted

• Estimate location of phase 
boundary to be slightly above 
mπ increasing with T

• Banks-Casher like relation also 
derived for large µI [Kanazawa, Wettig, 
Yamomoto EPJA 49 (2013) 88]

[Nagata et al, XQCD13 poster]

K. Nagata(KEK), Ph. de Forcrand(ETH),  
Y. Hidaka(RIKEN), M. Hanada(YITP),  
 A. Nakamura(Hiroshima), S. M. Nishigaki(Shimane) 

Dirac Spectrum of  Wilson fermions 
at finite isospin chemical potentials 

Extreme QCD�

Abstract :  QCD with finite isospin chemical potentials attracts increasing 
attention as a good laboratory to study QCD at finite quark chemical potential.  
Since the connection between two theories is limited to outside the pion 
condensed phase,  knowing the location of the phase boundary is important.  
 We study low-lying Dirac eigenmodes of Wilson type fermions at finite isospin 
chemical potentials and temperatures.  A typical chemical potential dependence is 
observed for eigenvalue distribution, which is expected from the separation of 
temporal and spatial modes.   The results were extrapolated to  estimate a 
location of phase boundary of the pion condensation.   

Bern, Switzerland, August 05-07 

This case is sign-free because phases cancel between  
up- and down-quark sectors.  
Two theories QCD at finite quark chemical potentials and 
QCD at finite isospin chemical potentials have a connection  
outside the pion condesed phase, but not inside it.   
Knowing  the location of pion condensed phase boundary is 
important.  
 

QCD with finite isospin chemical potentials  

cooper pairs of uba-r and d-quark are favored.  
e.g. Son & Stephanov, PRL86,592, (2001) 
 

Pion condensation  
 
Pion condensation occurs, when low-lying Dirac eigenmodes 
approach to zero on the complex plane.  
[e.g, Davies & Klepfish(‘90), Sasai, Takaishi&Nakamura(‘05). 
random matrix, Akemann et.al. NPB712,287(2005), ] 

Dirac eigenmodes and pion condensation 

 
Dirac spectrum depends on the type of fermions. Recently, Wilson fermions have 
been often used.  We study the Dirac spectrum of Wilson fermions at finite isospin 
chemical potentials, and estimate the location of the phase boundary.  

Motivation  

Wilson Dirac spectrum on the complex plane  
•  Action : Iwasaki gauge action + clover Wilson fermion!

•  Lattice size :   8^3x4,  beta : 1.80, 1.86, 1.90 => V=(0.25x8 fm)^3, T /Tc= 0.9 , 1, 1.1!

•  mps/mV=0.8!
•  mI a = 0.1-0.5 (mI/T = 0.4~2.0)!

•  One thousand low-lying Dirac eigenmodes were obtained for three configurations. 
(Eigenvalues were cut by magnitude)!

Lattice Setup 
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Low-lying eigenmodes and phase boundary 
 (preliminary) 

<= The observed behavior is consitent 
with free Wilson spectrum with chemical 
potential. In free case, the change is 
caused by splitting of temporal and spatial 
modes. 

Connections between QCDI and QCDB 
e.g., orbiforld equivalance in large Nc (Hanada& 
Yamamoto (‘2011) 

QCD inequality and no-go theorem for 
CEP . (Hidaka & Yamamoto(2012)  
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Dirac Spectrum of Wilson fermions

µ=0.5

Lattice studies of isospin density, e.g.  
Kogut & Sinclair PRD70,094501,(2004),PoSLAT2006,147, arXiv:
0709.2367. de Forcrand, Stephanov, Wenger, PoS Lat2007, 237. 

Summary & outlook  
•  Wilson Dirac Spectrum shows the typical chemical potential dependence.  
•  Naive extrapolation suggests that the phase boundary of pion condensation 

in two-flavor QCD with Wilson fermions is located around mu_I/T = 0.67, 
0.78, 0.82, for T/Tc=0.93, 1.00, 1.08 using Dirac eigenvalues averaged over 
three configurations.  

•  Increasing statistics should be done in future.  

�2 =
2⇡3

3Nc
⇢(0)

Nf=2 clover
mpi/mrho ~0.8

83x4 lattices



QCD with explicit isospin charge

• Another way of probing isospin density is by 
explicitly adding isospin density to the system

• Construct correlation functions with 
“many pions”

• Wick contractions explode - new 
techniques necessary (a precursor to nuclei)

• Aim is somewhat different: extract properties of ground state 
of the system

• Interplay between few body physics (extraction of 2, 3, .... body 
interactions) and bulk physics



Many mesons in LQCD

Cn(t) =
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• A typical n π+ correlator (mu=md)



• A typical n π+ correlator (mu=md)

Many mesons in LQCD

Cn(t) =
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• Consider n π+ correlator (mu=md)

• n!2 Wick contractions: (12!)2 ~ 1017

• Computable as coefficients in expansion of det=[1+ λΠ] 
[WD et al (NLQCD) 2007]

• Maximal isospin: only a single quark propagator for small n

• Generalised to multi-species systems [Detmold & Smigielski 2011]

Many mesons in LQCD

i,α
j,β

Cn(t) =

*
0

�����

"
X

x

d�5u(x, t)u�5d(0, 0)

#n����� 0

+

! A e�Ent

C3(t) = tr [⇧]3 � 3 tr [⇧] tr
⇥
⇧2 + 2 tr

⇥
⇧3

⇤

⇧ =
P

x

�5S(x, t; 0)�5S†(x, t; 0)
]



Larger systems

• How do we deal with complexity of contractions?

• One species:                                 

• Two-species is harder, more is unfeasible

• How do we go beyond n=12?

• Previous method fails because of Pauli principle

• Avoid by using multiple propagator sources but this leads to 
contraction complexity

Nterms ⇠ e⇡
p

2n/3/
p

n



Few pion contractions

C1⇡(t) =

C2⇡(t) =

C3⇡(t) = �3 �2

�



Blocks

• Define a partly contracted pion correlator

• Time-dependent 12x12 
matrix (spin-colour indices)

• Correlators

• Functional definition

• Generalises to 

⇧ ⌘ R1 =
X

x

Su(x, t;x0)�5Sd(x0;x, t)�5 =
X

x

Su(x, t;x0)S†
d(x, t;x0)

⇧ij = ūi(x)uk(x0)
�

�ūj(x)�uk(x0)
C1(t)

(Rn)ij ⌘ ūi(x)uk(x0)
�

�ūj(x)�uk(x0)
Cn(t)

C1(t) = h⇧i, C2(t) = h⇧i2 � h⇧2i, . . .



Recursion relation

• The block objects are simply related

• Very simple recursion relation

• Initial condition is that 

• Can also construct a descending recursion as we know that 
R13=0 

• NB: recurrence idea generalised to baryons 
[Doi&Endres 2012; WD & Orginos 2012; Gunther, Toth, Varnhorst Phys.Rev. D87 (2013) 094513]

Rn+1 = hRni R1 � n Rn R1

R1 = ⇧, Rj = 0, 8j < 1

[WD, M Savage, Phys. Rev. D82, 014501, 2010]



Multi-source systems

• To get beyond n=12, need to consider multi-source systems

• Consider two sources first

• C(1,2)(t) contains contractions like 

C(n1⇡+
1 , n2⇡+

2 )(t) =

*  
X

x

⇡+(x, t)

!n1+n2  
⇡�(y

1

, 0)

!n1  
⇡�(y

2

, 0)

!n2 +

x, t

y1

y2



Multi-source systems

• Multiple types of blocks needed 

• Two species case has a simple recursion relation:
First define

Then the generalisations of the Rn satisfy a recursion

Q(n1+1,n2) = h Q(n1,n2) i P1 � (n1 + n2) Q(n1,n2) P1

+h Q(n1+1,n2�1) i P2 � (n1 + n2) Q(n1+1,n2�1) P2

Aab =
X

x

Su(x, t;xa)S†
d(x, t;xb)

xa

xb

P1 =
✓

A11(t) A12(t)
0 0

◆
, P2 =

✓
0 0

A21(t) A22(t)

◆



Further algorithms

• A number of other ways of performing the contractions 

• Vandermonde matrix method

• Improved recursion method

• fast Fourier methods

• eigenvalue method [Anyi Li]

• Scale as N3 !!

37

where A is a 12N⇥12N matrix2 constructed from uncontracted correlators following

Eq. (3.1). A simple way to get Cn⇡ is by computing Eq. (3.2) for 12N di↵erent

choices of � (�
1

, . . . , �

12N). The resulting system of equations can be written in the

following matrix form

0

BBBBBBB@

det[1+�1A]�1

�1

det[1+�2A]�1

�2

...

det[1+�12NA]�1

�12N

1

CCCCCCCA

=

0

BBBBBBB@

1 �

1

�

2

1

. . . �

12N�1

1

1 �

2

�

2

2

. . . �

12N�1

2

...

1 �n �

2

n . . . �

12N�1

n

1

CCCCCCCA

·

0

BBBBBBB@

C

1⇡

C

2⇡

...

C

12N⇡

1

CCCCCCCA

. (3.3)

The matrix on the RHS of Eq. (3.3) is a 12N ⇥ 12N Vandermonde matrix, for

which there exist analytical forms for the determinant and inverse (see for example

Ref. [27]). The inverse matrix then allows us to determine the Cn⇡’s from the

numerical calculation of the determinant vector. However, when the number of

sources becomes large, elements of this matrix can become very small or very large

because of the factors of �

1,2,...,12N�1

i , which makes the computation of the inverse

very demanding in precision and eventually resulting in significant numerical errors

unless very high precision is used.

3.2 FFT method (FFTm)

By choosing � = exp(i2⇡f

0

· ⌧) in Eq. (3.2), the expansion becomes

det[1 + �A] = 1 + e

2i⇡f0·⌧
C

1⇡ + e

4i⇡f0·⌧
C

2⇡ + . . . + e

24i⇡Nf0·⌧
C

12N⇡, (3.4)

which contains contributions from signals of frequencies kf

0

, k = 1, 2, . . . 12N , which

can be thought of as a Fourier series. Because of this feature, the magnitude of

2In pervious chapter M denotes the number of source, while in this chapter N is used to denote
the number of source.
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FIG. 3.4: Comparison of the number of multiplications required for each method (RH
axis), and the corresponding expected computation time of Cn⇡(t) for n = 1, 2, . . . 12N on
a single time slice, corresponding to one application of the specified contraction method
in seconds using a single 2.4 GHz Xeon core (LH axis). The computational cost of the
ICm is taken from the actual running time, and it is used to normalize the time scale so
that the projected running time of other methods can be read out from the LH axis.

[WD, K Orginos,  Zhifeng Shi, PRD 86 (2012) 054507]



Lattice details

• NPLQCD collaboration [PRL2007,PRD2008,...]

• Calculations use MILC gauge configurations

• L=2.5 fm, a=0.12 fm, rooted staggered 

• also L=3.5 fm and a=0.09 fm

• NPLQCD: domain-wall quark propagators

• mπ ~ 291, 318, 352, 358, 491, 591 MeV

• 24 propagators / lattice in best case

• Iz=n=1,...,12 pion and (S=n) kaon systems



n-meson energies
• Effective energy plots: log[Cn(t)/Cn(t+1)]

DWF on MILC
mπ = 319 MeV

a=0.09 fm, 283x96
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Larger systems

• Iz=n=1,...,72 pion

• Calculations use anisotropic configs from HSC

• Clover fermions, Tadpole improved gauge

• as=0.12 fm, at=0.04 fm

• Multiple sources to get to large systems

• Gauge fixed momentum sources/sinks

• High precision arithmetic crucial

• Three volumes: 163x128, 203x128, 203x256, 243x128

• Short time extents in two volumes necessitates A+P trick 
(checked it OK on T=256 data)

[WD, K Orginos,  Zhifeng Shi, PRD 86 (2012) 054507]



Thermal effects

• In lattice of finite temporal extent, contributions where states go 
around temporal boundary are important 

FIG. 5: The black data is the e⇥ective mass calculated from the original data from ensemble B2,
and blue line is reconstructed from the ground state energies extracted from the ensemble B4 as
discussed in the main text. The red line is the fitted value of En⇡ extracted from the correlators
of ensemble B4.

For the T = 128 (256) ensembles, 8 (16) colorwave propagators are generated on each
configuration located 16 time slices apart to minimize correlations between propagators. For
ensembles {B1, B2, B3, B4}, {180, 51, 147, 98} configurations and {33, 19, 19, 7} momenta
are used respectively. In order to reduce contamination from thermal states, a temporal
extent of T = 256 is desirable for systems of large numbers of pions. On the B1 and
B3 ensembles, the A ± P (antiperiodic ± periodic propagator) method [26–28] is applied
to e↵ectively double the temporal extent. The validity of this method is investigated by
comparing results from ensemble B4 (203⇥256) and with those from ensemble B2 (203⇥128)
with the A±P method and it is found to be sound at the precision we achieve for the systems
under consideration as discussed below.

IV. GROUND STATE ENERGIES

Previous studies of the energies and isospin chemical potentials [6, 16] on ensemble B2
showed that thermal states contribute significantly to correlation functions and, even for
C

12⇡(t), the ground state does not dominate in any region of Euclidean time. The expected
form of correlation functions of an n-⇡+ system with temporal extent T is [6]

Cn⇡(t) =

bn
2 cX

m=0

✓
n

m

◆
A

n
mZ

n
me

�(En�m+Em)T/2 cosh((En�m � Em)(t� T/2)) + . . . , (23)

where A

n
m = 1 when m = n/2, otherwise A

n
m = 2. Em is the ground state energy of a m-⇡+

system, the Z

n
m are the overlap factors for contribution with m ⇡’s propagating backward

around the temporal boundary, and the ellipsis denotes contributions from excited states.
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FIG. 2.4: In this figure, the correlation function of systems containing 12-⇡, denoted
as C

12

(t), is decomposed into di↵erent contributions to get a better understanding of
the di�cult in extracting ground state energies resulting from the necessity to including
all thermal contributions in the fit. “f

all wMp

” is by summing all contributions, and
“f

all noMp

” denotes contributions only from the ground state and thermal states, which
overlaps exactly with the “f

all wMp

” at latter time slices, and lays over the ground state
contribution “f

0

” at earlier time slices. “f
excit

” denotes the contribution from the first
excited state, which dominates the “f

all wMp

” at early time slices. “f
1

” represents the
contribution from the 1st thermal states, where 1 pion propagates in an opposite direction
with others, and similar “fk” denotes contributions from the kth thermals states, where
k pions propagate in the opposite temporal direction to other 12 � k pions.



Energies

• Ground state energy of 
Iz=n system vs n

• Increasingly repulsive 
interactions

FIG. 14: The ground state energies of a system of n-⇡+(En⇡) extracted from ensembles B1 (red),
B3 (green) and B4 (blue) are shown. The black line represents the total energy of n non-interacting
pions.

which is valid for momenta below the inelastic threshold. The regulated three-dimensional
sum, S(x), is

S ( x ) ⌘
⇤!1
lim

0

@
|j|<⇤X

j

1

|j|2 � x

� 4⇡⇤

1

A
, (26)

where the summation is over all triplets of integers j such that |j| < ⇤.
By performing an expansion in small 1/L, the energy shift of n identical bosons in a finite

volume, �En = En � nE

1

, has also been studied up to O(L�7) in recent work [29–32]. The

21



Effective chemical potential

• Define “effective 
chemical potential” 

via finite difference

• NB: E is g.s. energy

• Agrees with ChPT 
expectation at low 
density but then 
behaviour changes

FIG. 20: The isospin chemical potential, µI , is plotted as a function of the isospin density, ⇢I ,
from three lattice ensembles, B1 (red), B3 (blue) and B4 (green). The solid black line is from
expectations of �PT [8]

T

µIm⇡

A

< d�5u >= 0

< ⇡+ >6= 0 < d�5u >6= 0

FIG. 21: Expected QCD phase diagram following Ref. [8]. Our calculations at a fixed temperature,
T ⇠ 20 MeV probe the phase structure along the red dashed line from µI = m⇡ to µI = 4.5 m⇡.

29

µI =
dE
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V

[WD, K Orginos,  Zhifeng Shi, PRD 86 (2012) 054507]



Energy density

• Energy density c.f. Stefan-Boltzmann expectation

• Peak position corresponds to I~1.3 mπ 

[WD, K Orginos,  Zhifeng Shi, PRD 86 (2012) 054507]



Strangeness and Isospin

• LOχPT phase diagram for µI,µS [Kogut & Toublan, PRD 64, 034007 (2001)]  

• Investigate through systems with K+’s and π+’s [Detmold & Smigielski, PRD  
(2011)]

• Contractions and analysis become far more complex

• QCD calculations probe interesting region blue=small n+m
orange=large n+mcoefficients from the measured energies using Eqs. (4.5)

and (4.6). These determinations rely on a second bootstrap
analysis involving a resampling of the extracted energies.
The bootstrapping procedure for a specific correlation
function yielded P energies, and these formed the boot-
strap samples for the extraction of the two- and three-body
parameters.

Once the best fit multimeson energies were known, a
very similar procedure used for the analysis of the corre-
lators was used to find the !a’s and !!’s. Since a bootstrap
ensemble exists for every best fit energy value, we created
an energy sample, E" such that " 2 ½1;P ". This sample
carries an additional vector index that labels the energies
within the vector. In the case of single-species pion ener-
gies (the kaon case is identical), an energy vector initially

composed of E" ¼ fEð"Þ
2;0 ; E

ð"Þ
3;0 ; E

ð"Þ
4;0 g was used to fit to !a##

and !!3;###. We included another energy and refitted the
interaction parameters and repeated this until all the ener-
gies were exhausted. In the multispecies case, a base set of

fEð"Þ
2;0 ; . . . ; E

ð"Þ
12;0; E

ð"Þ
0;2 ; . . . ; E

ð"Þ
0;12g along with ten randomly

selected multispecies energies was created and fits per-
formed for all seven hadronic parameters. This first set
thus made use of 34 different energies. This set was en-
larged by one, the parameters were refitted, and the process
repeated until all 90 energies were used. The energy co-
variance matrix used in these fits is defined according to

C ðEÞi;j ¼
1

P & 1

XP

"¼1

ðE";i & hEiiÞðE";j & hEjiÞ; (5.6)

such that hEii ¼ ð1=P ÞPP
"¼1 E";i, and the energy $2 on

each bootstrap is defined as

$2
"¼

X

i;j

ðE";i&f";ið !a; !!ÞÞCðEÞ&1
i;j ðE";j&f";jð !a; !!ÞÞ; (5.7)

where fð !a; !!Þ is shorthand notation for the fit functions in
Eqs. (4.4), (4.5), and (4.6).

The systematic errors assigned to the !a’s and !!’s are
more complicated than those of the energies. Given a
particular energy set of N energies that are used to
make a determination of !a’s and !!’s there are 3N different
combinations of the intervals that must be fit in order to
completely propagate the systematic uncertainties of the
energies to those of the interaction parameters (it is 3N

because there is a ½tmin; tmax" for each best fit energy as well
as its systematic counterparts corresponding to the shifted
time interval in the forward and backward direction). Even
in the single-species case, when N ¼ 10, there are al-
ready'6( 104 combinations. For the multispecies case, it
is too costly to fit all these permutations. Rather, we only fit
Oð103Þ randomly chosen permutations and take the differ-
ence of the mean of this set from the best fit !a and !! as the
systematic error. From fitting all permutations in the

single-species case, up to N ¼ 9, it was seen the system-
atic error stabilized well before the total number of combi-
nations was computed and we assume this is also the case
for the two-species case.

VI. RESULTS

A. Energies

Using the methods discussed above, we extracted the
energies of the mixed and pure species system, from all 90
correlators. The final extracted values are shown in Tables I
and II below, along with their associated fit ranges. These
energies are shown in a three-dimensional plot along with
their respective uncertainties in Fig. 1.
The fits become progressively more difficult as the

number of mesons grows because of the increasing thermal
contamination. This is directly reflected in the quality of
the fits decreasing for large meson number in both the pure
species and mixed-species case. Fits to example correlators
are shown in Figure 6(a) 19.

B. Interactions

The extractions of interaction parameters from mixed-
meson energies were performed to yield the three scatter-
ing lengths and four three-body coefficients. This work
builds upon the studies of [8–10] and presents the first
measurements of !!3;##K, and !!#KK since these parameters
can only be measured within the framework of the mixed-
meson system.
The most straightforward determination of the scattering

lengths is given by using the eigenvalue relation from
Eq. (4.1). Using this, we find
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N
0
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10

NK

0.5

1.0

1.5

EN ,NK

FIG. 1 (color online). Energy of multimeson states.
Uncertainties shown are result 24from combining statistical and
systematic uncertainties in quadrature. 25
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nonorthogonal directions; the differences between EN!;NK

and EN!!1;NK
determine "I while linear combinations of

EN!;NK
; EN!!1;NK

, and EN!;NK!1 determine "S.
3 One goal

of this analysis is to see where on the "S vs "I phase
diagram [17] the states created in the lattice calculation lie.

In Ref. [17], leading order SU(3) #PT is used to predict
three distinct phases for nonzero isospin and hypercharge
chemical potential. The first is the normal phase where the
ground state has a net particle number of zero. The other
two phases are the pion-condensed and kaon-condensed
phases. The transition between the kaon-condensed phase
and the pion-condensed phase is predicted to be a

first-order phase transition, separated by the line "S ¼
ð!m2

! þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

! !"2
I Þ2 þ 4m2

K"
2
I

q
Þ=2"I, while the transi-

tion from the normal phase to either condensed phase is
expected to be of second order4 and are defined by the lines
"S ¼ mK !"I=2 and "I ¼ m!. These predictions as-
sume zero temperature and are likely softened by the non-
zero temperature at which the lattice calculation is
performed [62].

In Fig. 9, both the lattice calculations of ð"I;"SÞ and the
#PT phase boundaries are shown (dashed lines). Data
points corresponding to higher numbers of particle states
are shown in a22 orange/reddish color, while lower numbers
are given in a blueish/greenish color. Points with large
uncertainties are excluded from this figure for clarity (the
omitted data correspond to the highest particle numbers). It

is striking that the calculated chemical potentials mostly lie
near the first-order phase transition line predicted by #PT.
Further calculations with larger numbers of pions and
kaons will be enlightening, but more complex probes of
these systems may be needed to fully understand the states
that have been produced.

VII. CONCLUSIONS

In this work, we have numerically studied complex
systems of mesons of two distinct flavors, like-charged
pions and kaons, and used them to extract information
about the two- and three- body interactions amongst pions
and kaons. Where known, the interactions were found to be
consistent with previous calculations, however, two mixed-
species three-body interactions were determined for the
first time. Additionally, the isospin and strangeness chemi-
cal potentials and phase structure of the system have been
investigated, with the systems preferring to probe a region
in the ð"I;"sÞ plane where #PT predicts a first-order phase
transition.
A major aim of this work was to investigate technical

issues that arise in the analysis of complex multihadron
systems. Accounting for the thermal states that proliferate
in such systems, which easily factorize into distinct color
singlet states, proved challenging and future calculations
should avoid this by using larger temporal extents.
Additionally, a number of techniques to perform coupled
fits to theOð100Þ correlators studied were investigated and
found to be beneficial in the analysis.
In the future, calculations probing larger meson numbers

will allow further investigations of the phase structure of
these interesting QCD systems. To understand the structure
of the condensed systems created in the current and future
calculations, more complicated observables that access
transport properties may be needed; investigations in this
direction are under consideration.
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! EN! ;NK!1 and

"I ¼ EN!;NK
! EN!!1;NK4An AdS/QCD based model [61] finds these transitions to be

of first order.
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Few-body interactions

• Few body systems can be used to extract two- and three- 
hadron interactions

• For near-threshold systems, Lüscher two-particle quantisation 
condition generalised to n boson systems [Bogoliubov ’47;Huang,Yang ’57; 

Beane, WD, Savage PRD76;074507, 2007;   WD+Savage PRD77:057502,2008]

• Few body parameters can be extracted from fits to energy 
shifts

Two-body 
interaction

Three-body 
interaction

�En =
4⇡a

M L3
nC2

n
1�

✓
a

⇡ L

◆
I +

✓
a

⇡ L

◆2 ⇥
I2 + (2n� 5)J

⇤

�
✓

a

⇡ L

◆3
⇥

I3 + (2n� 7)IJ + (5n2 � 41n + 63)K
⇤

o

+nC3
1
L6

⌘̂L
3 +O(L�7)



Low energy pion interactions

• Two pion (I=2) and three pion (I=3) interactions
FIG. 16: The energy di↵erences, �En, are plot as a function of the number of pions, n, where the
blue points are the original data, the red bands are the fits, and the black bands are the regions
where the fits are performed. From the left to right, �En from 163, 203, 243 are shown.

FIG. 17: The scattering phase shifts from 163, 203, and 243 ensembles in this study, are shown
as the black data points from right to left respectively. The blue data points are the 243 and 323

ensemble results from Ref. [33] from right to left respectively. The 243 data is excluded in the fit
as discussed in the main text. The shaded region is the uncertainty and the star is the infinite
volume result.

By utilizing the extracted e↵ective range, r, and the e↵ective scattering length, a(L), from
the three di↵erent volumes, from Eq. (30), the volume dependent parameter ⌘L

3

, responsible
for the three-body interactions can be determined for each volume. The extracted values of
⌘

L
3

are shown in Fig. 18. The dependence of ⌘
3

on the volume can be rewritten from Eq. (31)

25
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Isospin medium effects

• Medium of fixed isospin density modifies other hadronic 
properties

• Three examples

• Quarkonium in medium [Detmold, Meinel & Shi PRD ]

• Baryon masses in medium [Nicholson & Detmold, Latt13]

• Pion structure in medium [Detmold &  H W Lin PoS Latt10]



Quarkonium in medium

• Presence of isospin density modifies the forces binding a quark 
anti-quark pair together

• Static limit, encapsulated in static quark potential

• Small screening effect seen [Detmold, Savage PRL 2009]

• Non-static case: modification of quarkonium spectroscopy

• Study S and P wave states and splittings vs ρI

• NRQCD study of bottomonium [Detmold, Meinel and Shi PRD 2013]

• RHQ study of charmonium [Shi PhD thesis 2013]

• Extract J/Ψ-π etc interactions

[WD, Stefan Meinel, Zhifeng Shi, PRD 2013 & to appear]



Screening of static potential

• Modification to static quark–anti-
quark potential from presence of 
isospin density

• For relevant distances

• Augment Cornell potential by this 
term and solve for quarkonium 
states

• Expect larger effects on P wave
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FIG. 1: Shifts in the static potential computed in Ref. [5] fitted to the simple form discussed in the text.

also critical in order to obtain statistically clean mea-
surements. The central results of this work were that the
potential is screened by the presence of the medium and
that this screening e↵ect is small. For the relatively low
pion densities investigated in Ref. [5], the dominant e↵ect
corresponded to a change in the potential in the linearly
rising region that was approximately linearly dependent
on both r and n. This form, �V (⇢I , r) = ↵ ⇢I r, cor-
responds to the physical expectation of a gas of weakly-
interacting pions permeating a flux-tube of constant ra-
dius between the static quark and anti-quark, and is a
picture in which the appearance of the isospin density,
⇢I , is natural. Performing a correlated fit to the results
presented in Ref. [5] using this form, we are able to de-
scribe the data well, as shown in Fig. 1, and find that
↵ = �8(3) MeV fm2. This result is for a pion mass of
m⇡ ⇠ 320 MeV [5].

To estimate the e↵ects on quarkonium spectroscopy,
we use the Cornell potential V

Cornell

(r) = �(4/3)↵s/r +
 r with ↵s = 0.24 and

p
 = 468 MeV (values fixed

in vacuum from Ref. [9]) and augment it with the small
screening shift discussed above. We then solve the radi-
ally symmetric Schrödinger equation numerically for an-
gular momentum ` and reduced massm

red

= m/2 (where
m is the heavy-quark mass),

h

� 1

2m
red

d2

dr2
+

`(`+ 1)

2m
red

r2
(1)

+V
Cornell

(r) + �V (⇢I , r)
i

u`(r) = E u`(r) ,

to establish the wave functions and eigenstate energies
for the various quantum numbers. The energy shift is
then defined simply as the di↵erence of the resulting en-
ergy from that where �V (⇢I , r) is omitted. We calculate
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FIG. 1: Shifts in the static potential computed in Ref. [5] fitted to the simple form discussed in the text.

also critical in order to obtain statistically clean mea-
surements. The central results of this work were that the
potential is screened by the presence of the medium and
that this screening e↵ect is small. For the relatively low
pion densities investigated in Ref. [5], the dominant e↵ect
corresponded to a change in the potential in the linearly
rising region that was approximately linearly dependent
on both r and n. This form, �V (⇢I , r) = ↵ ⇢I r, cor-
responds to the physical expectation of a gas of weakly-
interacting pions permeating a flux-tube of constant ra-
dius between the static quark and anti-quark, and is a
picture in which the appearance of the isospin density,
⇢I , is natural. Performing a correlated fit to the results
presented in Ref. [5] using this form, we are able to de-
scribe the data well, as shown in Fig. 1, and find that
↵ = �8(3) MeV fm2. This result is for a pion mass of
m⇡ ⇠ 320 MeV [5].

To estimate the e↵ects on quarkonium spectroscopy,
we use the Cornell potential V

Cornell

(r) = �(4/3)↵s/r +
 r with ↵s = 0.24 and

p
 = 468 MeV (values fixed

in vacuum from Ref. [9]) and augment it with the small
screening shift discussed above. We then solve the radi-
ally symmetric Schrödinger equation numerically for an-
gular momentum ` and reduced massm

red

= m/2 (where
m is the heavy-quark mass),

h

� 1

2m
red

d2

dr2
+

`(`+ 1)

2m
red

r2
(1)

+V
Cornell

(r) + �V (⇢I , r)
i

u`(r) = E u`(r) ,

to establish the wave functions and eigenstate energies
for the various quantum numbers. The energy shift is
then defined simply as the di↵erence of the resulting en-
ergy from that where �V (⇢I , r) is omitted. We calculate
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FIG. 1: Shifts in the static potential computed in Ref. [5] fitted to the simple form discussed in the text.

also critical in order to obtain statistically clean mea-
surements. The central results of this work were that the
potential is screened by the presence of the medium and
that this screening e↵ect is small. For the relatively low
pion densities investigated in Ref. [5], the dominant e↵ect
corresponded to a change in the potential in the linearly
rising region that was approximately linearly dependent
on both r and n. This form, �V (⇢I , r) = ↵ ⇢I r, cor-
responds to the physical expectation of a gas of weakly-
interacting pions permeating a flux-tube of constant ra-
dius between the static quark and anti-quark, and is a
picture in which the appearance of the isospin density,
⇢I , is natural. Performing a correlated fit to the results
presented in Ref. [5] using this form, we are able to de-
scribe the data well, as shown in Fig. 1, and find that
↵ = �8(3) MeV fm2. This result is for a pion mass of
m⇡ ⇠ 320 MeV [5].

To estimate the e↵ects on quarkonium spectroscopy,
we use the Cornell potential V

Cornell

(r) = �(4/3)↵s/r +
 r with ↵s = 0.24 and

p
 = 468 MeV (values fixed

in vacuum from Ref. [9]) and augment it with the small
screening shift discussed above. We then solve the radi-
ally symmetric Schrödinger equation numerically for an-
gular momentum ` and reduced massm

red

= m/2 (where
m is the heavy-quark mass),

h

� 1

2m
red

d2

dr2
+

`(`+ 1)

2m
red

r2
(1)

+V
Cornell

(r) + �V (⇢I , r)
i

u`(r) = E u`(r) ,

to establish the wave functions and eigenstate energies
for the various quantum numbers. The energy shift is
then defined simply as the di↵erence of the resulting en-
ergy from that where �V (⇢I , r) is omitted. We calculate

[data from WD, M Savage, PRL 2009]



Static potential

• Modification to static quark–anti-
quark potential from presence of 
isospin density

• For relevant distances

• Augment Cornell potential by this 
term and solve for quarkonium 
states

• Expect larger effects on P wave
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FIG. 1: Shifts in the static potential computed in Ref. [5] fitted to the simple form discussed in the text.

also critical in order to obtain statistically clean mea-
surements. The central results of this work were that the
potential is screened by the presence of the medium and
that this screening e↵ect is small. For the relatively low
pion densities investigated in Ref. [5], the dominant e↵ect
corresponded to a change in the potential in the linearly
rising region that was approximately linearly dependent
on both r and n. This form, �V (⇢I , r) = ↵ ⇢I r, cor-
responds to the physical expectation of a gas of weakly-
interacting pions permeating a flux-tube of constant ra-
dius between the static quark and anti-quark, and is a
picture in which the appearance of the isospin density,
⇢I , is natural. Performing a correlated fit to the results
presented in Ref. [5] using this form, we are able to de-
scribe the data well, as shown in Fig. 1, and find that
↵ = �8(3) MeV fm2. This result is for a pion mass of
m⇡ ⇠ 320 MeV [5].

To estimate the e↵ects on quarkonium spectroscopy,
we use the Cornell potential V

Cornell

(r) = �(4/3)↵s/r +
 r with ↵s = 0.24 and

p
 = 468 MeV (values fixed

in vacuum from Ref. [9]) and augment it with the small
screening shift discussed above. We then solve the radi-
ally symmetric Schrödinger equation numerically for an-
gular momentum ` and reduced massm

red

= m/2 (where
m is the heavy-quark mass),

h

� 1

2m
red

d2

dr2
+

`(`+ 1)

2m
red

r2
(1)

+V
Cornell

(r) + �V (⇢I , r)
i

u`(r) = E u`(r) ,

to establish the wave functions and eigenstate energies
for the various quantum numbers. The energy shift is
then defined simply as the di↵erence of the resulting en-
ergy from that where �V (⇢I , r) is omitted. We calculate

3

this shift for both the 1S and 1P states and various dif-
ferent values of the heavy-quark mass as shown in Fig. 2.
We note that one could use only the Cornell potential
to determine the wave functions and include the addi-
tional small shift from the screening as a perturbation,
calculating

�E(⇢I) ⇠
Z

dr u
(0)⇤
` (r)�V (⇢I , r)u

(0)

` (r) , (2)

where u(0)

` (r) are the solutions to Eq. (1) when �V (⇢I , r)
is omitted. As the shift is small, we expect this will give
consistent results.

Since P -wave states are more extended in size, they
probe regions of the potential where the shift is larger
and consequently we find that the energy shift is larger
for these states than for the S-wave states. The e↵ect
also increases as the heavy-quark mass decreases, again
because of the larger size of the lighter systems.

In the following, we determine quarkonium eigen-
energies in (NR)QCD at non-zero isospin density and
investigate to what extent they are predicted by the po-
tential model described above based on a screening pion
gas.

III. LATTICE METHODOLOGY

A. Lattice details

In this study, we make use of anisotropic gauge
configurations generated by the Hadron Spectrum and
NPLQCD collaborations. The full details of the action
and algorithms used to generate the configurations are
discussed in the original works, Refs. [10, 11]; here we
summarise the salient features of the configurations and
the measurements that we perform. A tree-level, tadpole-
improved gauge action [12], and nf = 2+1 flavour clover
fermion action [13] are used. Two levels of stout smear-
ing [14] with weight ⇢ = 0.14 are applied in spatial di-
rections only in order to preserve the ultra-locality of the
action in the temporal direction. The gauge action is
constructed without a 1 ⇥ 2 rectangle in the time direc-
tion for the same reason. In this study, we make use of
a single spatial lattice spacing, as = 0.1227(8) fm [11]
and have a renormalised anisotropy of ⇠ = as/at = 3.5,
where at is the temporal lattice spacing. We also work at
a single value of the light-quark mass for this exploratory
investigation and use a strange-quark mass that is close
to its physical value; these values correspond to a pion
mass of m⇡ ⇠ 390 MeV and a kaon mass of mK ⇠ 540
MeV. For these parameters, we investigate three di↵erent
ensembles, corresponding to di↵erent physical volumes
and temporal extents as shown in Table I. The di↵er-
ent physical volumes allow us to access a large range of
isospin densities in our study, and the di↵erent tempo-
ral extents provide control of thermal e↵ects as discussed
in Ref. [6]. On these gauge configurations we calculate
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FIG. 2: Shifts in the energies of the 1S (upper) and 1P (lower)
states in quarkonium as a function of the isospin density, com-
puted in a potential model. Results are shown for four dif-
ferent values of the heavy-quark mass with the uncertainty
shown only for the mass closest to the physical bottom-quark
mass, m = 4.676 GeV (uncertainties for the other masses are
of similar size).

correlation functions involving light quarks and use the
colourwave propagator basis introduced in Ref. [6], fix-
ing to Coulomb gauge and using plane-wave sources and
sinks for a range of low momenta (N

mom

in total on each
ensemble, see Table I). For each case, we calculate light-
quark propagators on N

cfg

configurations from N
src

time-
slices, equally spaced throughout the temporal extent.
Details of the NRQCD heavy quark propagator calcula-
tions are discussed below.

B. Multi-pion lattice correlators

In order to produce the medium that will modify the
propagation of the quarkonium states, we use the canoni-
cal approach of constructing many-pion correlation func-
tions that is described in detail in Ref. [6], using meth-
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FIG. 1: Shifts in the static potential computed in Ref. [5] fitted to the simple form discussed in the text.

also critical in order to obtain statistically clean mea-
surements. The central results of this work were that the
potential is screened by the presence of the medium and
that this screening e↵ect is small. For the relatively low
pion densities investigated in Ref. [5], the dominant e↵ect
corresponded to a change in the potential in the linearly
rising region that was approximately linearly dependent
on both r and n. This form, �V (⇢I , r) = ↵ ⇢I r, cor-
responds to the physical expectation of a gas of weakly-
interacting pions permeating a flux-tube of constant ra-
dius between the static quark and anti-quark, and is a
picture in which the appearance of the isospin density,
⇢I , is natural. Performing a correlated fit to the results
presented in Ref. [5] using this form, we are able to de-
scribe the data well, as shown in Fig. 1, and find that
↵ = �8(3) MeV fm2. This result is for a pion mass of
m⇡ ⇠ 320 MeV [5].

To estimate the e↵ects on quarkonium spectroscopy,
we use the Cornell potential V

Cornell

(r) = �(4/3)↵s/r +
 r with ↵s = 0.24 and

p
 = 468 MeV (values fixed

in vacuum from Ref. [9]) and augment it with the small
screening shift discussed above. We then solve the radi-
ally symmetric Schrödinger equation numerically for an-
gular momentum ` and reduced massm

red

= m/2 (where
m is the heavy-quark mass),

h

� 1

2m
red

d2

dr2
+

`(`+ 1)

2m
red

r2
(1)

+V
Cornell

(r) + �V (⇢I , r)
i

u`(r) = E u`(r) ,

to establish the wave functions and eigenstate energies
for the various quantum numbers. The energy shift is
then defined simply as the di↵erence of the resulting en-
ergy from that where �V (⇢I , r) is omitted. We calculate



Energy shifts

• Use NRQCD for bottom quarks at 
O(v6)

• Light quarks as before

• Consider ratios

where 

• Extract energy shift via exponential 
fits to ratio

4

N3

s ⇥Nt L[fm] m⇡L m⇡T u
0s N

cfg

N
src

N
mom

163 ⇥ 128 2.0 3.86 8.82 0.7618 334 8 33

203 ⇥ 256 2.5 4.82 17.64 0.7617 170 16 7

243 ⇥ 128 3.0 5.79 8.82 0.7617 170 8 19

TABLE I: Details of the ensembles and measurements used
in this work. u

0s is defined as the fourth root of the spatial
plaquette.

ods developed there and in earlier works [15–19]. As
discussed therein, correlators of a fixed isospin charge,
n =

PN
i=1

ni, and total momentum, Pf , making use of
N sources, are given by

Cn1,··· ,nN (t,Pf ) = hOn⇡+(t)O†
n⇡+(0)i

=

*

N
Y

i=1

0

@

X

xi,x0
i

e�i(pi
1xi�p

i
2x

0
i)d(x0

i, t)�5u(xi, t)

1

A

ni

⇥
n
Y

j=1

0

@

X

yj

eipfj
yju(yj , 0)�5d(yj , 0)

1

A

+

, (3)

where Pf =
Pn

i=1

pfi , and, for momentum conservation,
PN

i=1

(pi
1

� p

i
2

) =
Pn

j=1

pfj . In what follows, we will set

Pf = 0 but the pfi and p

i
1,2 take various values subject

to these constraints; di↵erent choices of the momenta
defining the interpolating operators will have di↵erent
overlap onto the eigenstates of the chosen Pf but provide
additional statistical resolution in the determination of
the energy of the system.

To construct these correlation functions, we work in
Coulomb gauge and compute light-quark colourwave
propagators

Su/d(p, t;p
0, 0) =

X

x

e�ipxSu/d(x, t;p
0, 0), (4)

where

Su/d(x, t;p
0, 0) =

X

y

eip
0
ySu/d(x, t;y, 0)

is a solution of the lattice Dirac equation:

X

x,t

D(y, t̃;x, t)Su/d(x, t;p
0, 0) = eip

0
y�

˜t,0 .

The contractions implicit in Eq. (3) can be written in
terms of a matrix Ã, the 12⇥ 12 sub-blocks of which are
given by

Ãk,i (t) =
X

p

S
�

p

k
1

,p
�

S† ��p

i
2

,pfi � p

�

, (5)

where k, i label the source and sink, and the dependence
on p

k
1

, pi
2

, and Pf is suppressed. The correlators above
can be extracted by noting that combinations of the
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FIG. 3: ⌘b and ⌥ correlators (upper) and e↵ective energies
(lower) on the 203 ⇥ 256 ensemble, for asm = 2.75.

Cn1,··· ,nN for a given n =
PN

i=1

ni are the coe�cients
of the expansion of

det[1 + �Ã] = 1 + �C
1⇡ + �2C

2⇡ + · · · + �12NC
12N⇡ ,(6)

and can be computed e�ciently using the methods of
Ref. [6]. The di↵erent Cn1,··· ,nN for a given n occur in
complicated combinations in this expansion, however we
are explicitly only interested in the energies of the system,
so the particulars of the combination are irrelevant.

These correlators have been studied in detail in pre-
vious work [6] and we do not present them again here.
As investigated in detail in Ref. [6], many-pion corre-
lations contain thermal contributions in which parts of
the system propagate around the temporal boundary. In
our choice of fitting ranges in the analysis presented be-
low, we are careful to remain away from the regions in
Euclidean time that are contaminated by either excited
states or by these thermal e↵ects.
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FIG. 4: hb correlator (upper) and e↵ective energy (lower) on
the 163 ⇥ 128 ensemble, for asm = 2.75.

C. NRQCD for quarkonium correlators

To implement the heavy quarks in our quarkonia sys-
tems, we use a lattice discretisation of non-relativistic
QCD (NRQCD). Since our light quark and gluon de-
grees of freedom are defined on an anisotropic lattice,
we require lattice NRQCD [20, 21] formulated on an
anisotropic lattice as first set out in Ref. [22]. As the non-
relativistic nature of the theory already separates space
and time, using a temporal lattice spacing that di↵ers
from the spatial lattice spacing is a very natural choice for
NRQCD. Anisotropic lattice NRQCD has been used for
example to calculate the spectrum of quarkonium hybrid
states [23, 24], and recently also to study quarkonium at
non-zero temperature [4, 25].

The Euclidean action for the heavy quark field,  , can
be written as

S = a3s
X

x,t

 †(x, t)
⇥

 (x, t) � K(t)  (x, t � at)
⇤

, (7)

where K(t) is the operator that evolves the heavy-quark
Green function forward one step in time. Here we use

the form

K(t) =

✓

1 � at �H|t
2

◆✓

1 � atH0

|t
2n

◆n

U †
0

(t � at)

⇥
✓

1 � atH0

|t�at

2n

◆n ✓

1 � at �H|t�at

2

◆

, (8)

where U
0

are the temporal gauge links. In this expres-
sion,

H
0

= ��(2)

2m
, (9)

is the order-v2 term in the NRQCD velocity expansion,
and �H is a correction term given by

�H = �c
1

�

�(2)

�

2

8m3

+ c
2

ig

8m2

⇣

r · eE � e

E · r
⌘

�c
3

g

8m2

� ·
⇣

er ⇥ e

E � e

E ⇥ er
⌘

� c
4

g

2m
� · eB

+c
5

a2s�
(4)

24m
� c

6

at
�

�(2)

�

2

16n m2

�c
7

g

8m3

n

�(2), � · eB
o

�c
8

3g

64m4

n

�(2), � ·
⇣

er ⇥ e

E � e

E ⇥ er
⌘o

�c
9

ig2

8m3

� · (eE ⇥ e

E) (10)

(the notation is as in Ref. [26]). The operators with co-
e�cients c

1

through c
4

are the relativistic corrections of
order v4, and the operators with coe�cients c

7

through
c
9

are the spin-dependent relativistic corrections of order
v6. The operator with coe�cient c

5

removes the order-
a2s discretization error of H

0

, and the operator with c
6

removes the leading order-at error in the time evolution.
Four-fermion operators, which arise beyond tree-level in
the matching to QCD, are not included. We set the coef-
ficients of the spin-dependent order-v4 terms to c

3

= 1.28
and c

4

= 1.05 to achieve the best possible agreement of
the bottomonium 1P and 1S spin splittings in vacuum
with the experimental values. We use the tree-level val-
ues ci = 1 for the other matching coe�cients. For tadpole
improvement [27] of the derivatives and field strengths,
we set u

0s equal to the 4th root of the spatial plaquette
(see Table I), and set u

0t = 1.
To avoid instabilities in the time evolution with the

operator in Eq. (8), the parameter n must be chosen such
that max[atH0

/(2n)] < 2 [21]. On an anisotropic lattice,
this requires

n > 3at/(2a
2

sm) = 3/(2⇠asm) (11)

(interactions with gluons weaken this requirement
slightly [21]). In this work, we set the bare heavy-quark
mass to asm = 2.75 (which is near the b quark mass)
as well as to the lower values asm = 2.0, 1.5, 1.2. Be-
cause we have ⇠ = 3.5, a stability parameter of n = 1 is
su�cient in all cases.
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D. Correlator ratios for energy shifts

To investigate the e↵ect of the medium on quarkonium
propagation, we consider the correlators

C(n; bb; t) = hObb(t)On⇡+(t)Õ†
bb
(0)O†

n⇡+(0)i , (15)

where h. . .i denotes path integration via the average
over our ensembles of gauge configurations, and the in-
terpolators O†

n⇡+ and O†
bb

produce the quantum num-

bers of n-pion and bb states as discussed in the pre-
ceding sub-sections. States with the combined quan-
tum numbers of the given quarkonium state (bb =
⌘b, ⌥, hb, �b0, �b1, �b2) and the n-pion system prop-
agate in this correlator and naturally, the spectrum of
this system is di↵erent from the sum of the spectra of n
pions and of quarkonium because of interactions. At Eu-
clidean times where only the ground state of the system
is resolved (after excited states have decayed and before
thermal states are manifest), this correlator will decay
exponentially as

C(n; bb; t) �! Z̃n;bb exp(�En;bbt) , (16)

where En;bb is the ground-state energy of the combined
system.

To access the change in the quarkonium energy as a
function of isospin density or chemical potential, we fur-
ther construct the ratios

R(n, bb; t) =
hObb(t)On⇡+(t)Õ†

bb
(0)O†

n⇡+(0)i
hObb(t)Õ†

bb
(0)ihOn⇡+(t)O†

n⇡+(0)i
. (17)

Since the two terms in the denominator decay exponen-
tially at large times as exp(�Ebbt) and exp(�En⇡+t) re-
spectively, the ratio will behave as

R(n; bb; t) �! Zn;bb exp(��En;bbt) + . . . , (18)

where �En;bb = En;bb � En⇡+ � Ebb is the quantity of
central interest in our investigation.

As a check of our methods, we constructed ratios in
which we artificially removed the correlations between
the bb system and the many-pion state by evaluating
P

c Cbb(c)Cn⇡(c + �c), where CX(c) represents the cor-
relation function for the quantity X measured on config-
uration c, and �c is either a constant displacement or a
random shift. In both cases, the removal of the corre-
lation eliminates the signal for an energy shift. This is
shown for the ⌘b with n = 5 in Fig. 5 for random shifts,
and the same qualitative e↵ect is seen for all choices of
the density and quarkonium state that are considered.

IV. QUARKONIUM-PION SCATTERING

The quarkonium state in the presence of a single pion
allows us to study the scattering phase shift of this two-
body system using the finite-volume formalism developed
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FIG. 5: The ratio R(5, ⌘b; t) computed with and without the
correct correlation between the ⌘b and many-pion system on
the 203 ⇥ 256 ensemble, as discussed in the main text. The
time-dependence, which is related to the energy shift through
Eq. (18), only appears when correlations are included.

by Lüscher [33, 34]. The S-wave quarkonium states we
consider have angular momentum J = 0, 1 and define the
total angular momentum of the entire system since the
pion is spin-zero. Since the pion and bb states have di↵er-
ent masses, the appropriate generalisation of the Lüscher
relation to asymmetric systems [35] is required. We can
define a scattering momentum p through the relation

q

(asp)2/⇠2 + a2tM
2

bb
+

q

(asp)2/⇠2 + a2tM
2

⇡ (19)

= at�Ebb,⇡ + atMbb + atM⇡ ,

where Mbb ⌘ M bb
kin

is the kinetic mass of the bb state.
The energy shifts �Ebb,⇡ are extracted from fits to the

ratios R(1; bb; t); see Sec. VA for details of the fitting
method and the results for �Ebb,⇡.
The scattering momentum then determines the eigen-

value equation

p cot �bb,⇡(p) =
1

⇡L
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that is satisfied by the bb-⇡ scattering phase shift,
�bb,⇡(p), at the scattering momentum.
Since we have three di↵erent lattice volumes, we can

extract the phase shift at multiple momenta. In Figure
6, we show the phase shifts that we extract for the ⌘b-⇡
and ⌥-⇡ scattering channels. These interactions neces-
sarily vanish in the chiral limit as the quarkonium states
are chiral singlet objects [36]. We therefore expect only
small scattering phase shifts at the quark masses consid-
ered in our study. The measured values of the S-wave
phase shifts are given in Tables V and VI, while for the

7

D. Correlator ratios for energy shifts

To investigate the e↵ect of the medium on quarkonium
propagation, we consider the correlators

C(n; bb; t) = hObb(t)On⇡+(t)Õ†
bb
(0)O†

n⇡+(0)i , (15)

where h. . .i denotes path integration via the average
over our ensembles of gauge configurations, and the in-
terpolators O†

n⇡+ and O†
bb

produce the quantum num-

bers of n-pion and bb states as discussed in the pre-
ceding sub-sections. States with the combined quan-
tum numbers of the given quarkonium state (bb =
⌘b, ⌥, hb, �b0, �b1, �b2) and the n-pion system prop-
agate in this correlator and naturally, the spectrum of
this system is di↵erent from the sum of the spectra of n
pions and of quarkonium because of interactions. At Eu-
clidean times where only the ground state of the system
is resolved (after excited states have decayed and before
thermal states are manifest), this correlator will decay
exponentially as

C(n; bb; t) �! Z̃n;bb exp(�En;bbt) , (16)

where En;bb is the ground-state energy of the combined
system.

To access the change in the quarkonium energy as a
function of isospin density or chemical potential, we fur-
ther construct the ratios

R(n, bb; t) =
hObb(t)On⇡+(t)Õ†

bb
(0)O†

n⇡+(0)i
hObb(t)Õ†

bb
(0)ihOn⇡+(t)O†
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Since the two terms in the denominator decay exponen-
tially at large times as exp(�Ebbt) and exp(�En⇡+t) re-
spectively, the ratio will behave as

R(n; bb; t) �! Zn;bb exp(��En;bbt) + . . . , (18)

where �En;bb = En;bb � En⇡+ � Ebb is the quantity of
central interest in our investigation.

As a check of our methods, we constructed ratios in
which we artificially removed the correlations between
the bb system and the many-pion state by evaluating
P

c Cbb(c)Cn⇡(c + �c), where CX(c) represents the cor-
relation function for the quantity X measured on config-
uration c, and �c is either a constant displacement or a
random shift. In both cases, the removal of the corre-
lation eliminates the signal for an energy shift. This is
shown for the ⌘b with n = 5 in Fig. 5 for random shifts,
and the same qualitative e↵ect is seen for all choices of
the density and quarkonium state that are considered.

IV. QUARKONIUM-PION SCATTERING

The quarkonium state in the presence of a single pion
allows us to study the scattering phase shift of this two-
body system using the finite-volume formalism developed
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consider have angular momentum J = 0, 1 and define the
total angular momentum of the entire system since the
pion is spin-zero. Since the pion and bb states have di↵er-
ent masses, the appropriate generalisation of the Lüscher
relation to asymmetric systems [35] is required. We can
define a scattering momentum p through the relation
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that is satisfied by the bb-⇡ scattering phase shift,
�bb,⇡(p), at the scattering momentum.
Since we have three di↵erent lattice volumes, we can

extract the phase shift at multiple momenta. In Figure
6, we show the phase shifts that we extract for the ⌘b-⇡
and ⌥-⇡ scattering channels. These interactions neces-
sarily vanish in the chiral limit as the quarkonium states
are chiral singlet objects [36]. We therefore expect only
small scattering phase shifts at the quark masses consid-
ered in our study. The measured values of the S-wave
phase shifts are given in Tables V and VI, while for the
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where h. . .i denotes path integration via the average
over our ensembles of gauge configurations, and the in-
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bers of n-pion and bb states as discussed in the pre-
ceding sub-sections. States with the combined quan-
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agate in this correlator and naturally, the spectrum of
this system is di↵erent from the sum of the spectra of n
pions and of quarkonium because of interactions. At Eu-
clidean times where only the ground state of the system
is resolved (after excited states have decayed and before
thermal states are manifest), this correlator will decay
exponentially as

C(n; bb; t) �! Z̃n;bb exp(�En;bbt) , (16)

where En;bb is the ground-state energy of the combined
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To access the change in the quarkonium energy as a
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Since the two terms in the denominator decay exponen-
tially at large times as exp(�Ebbt) and exp(�En⇡+t) re-
spectively, the ratio will behave as

R(n; bb; t) �! Zn;bb exp(��En;bbt) + . . . , (18)

where �En;bb = En;bb � En⇡+ � Ebb is the quantity of
central interest in our investigation.

As a check of our methods, we constructed ratios in
which we artificially removed the correlations between
the bb system and the many-pion state by evaluating
P

c Cbb(c)Cn⇡(c + �c), where CX(c) represents the cor-
relation function for the quantity X measured on config-
uration c, and �c is either a constant displacement or a
random shift. In both cases, the removal of the corre-
lation eliminates the signal for an energy shift. This is
shown for the ⌘b with n = 5 in Fig. 5 for random shifts,
and the same qualitative e↵ect is seen for all choices of
the density and quarkonium state that are considered.

IV. QUARKONIUM-PION SCATTERING

The quarkonium state in the presence of a single pion
allows us to study the scattering phase shift of this two-
body system using the finite-volume formalism developed
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correct correlation between the ⌘b and many-pion system on
the 203 ⇥ 256 ensemble, as discussed in the main text. The
time-dependence, which is related to the energy shift through
Eq. (18), only appears when correlations are included.

by Lüscher [33, 34]. The S-wave quarkonium states we
consider have angular momentum J = 0, 1 and define the
total angular momentum of the entire system since the
pion is spin-zero. Since the pion and bb states have di↵er-
ent masses, the appropriate generalisation of the Lüscher
relation to asymmetric systems [35] is required. We can
define a scattering momentum p through the relation
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= at�Ebb,⇡ + atMbb + atM⇡ ,
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is the kinetic mass of the bb state.
The energy shifts �Ebb,⇡ are extracted from fits to the

ratios R(1; bb; t); see Sec. VA for details of the fitting
method and the results for �Ebb,⇡.
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that is satisfied by the bb-⇡ scattering phase shift,
�bb,⇡(p), at the scattering momentum.
Since we have three di↵erent lattice volumes, we can

extract the phase shift at multiple momenta. In Figure
6, we show the phase shifts that we extract for the ⌘b-⇡
and ⌥-⇡ scattering channels. These interactions neces-
sarily vanish in the chiral limit as the quarkonium states
are chiral singlet objects [36]. We therefore expect only
small scattering phase shifts at the quark masses consid-
ered in our study. The measured values of the S-wave
phase shifts are given in Tables V and VI, while for the
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To investigate the e↵ect of the medium on quarkonium
propagation, we consider the correlators

C(n; bb; t) = hObb(t)On⇡+(t)Õ†
bb
(0)O†

n⇡+(0)i , (15)

where h. . .i denotes path integration via the average
over our ensembles of gauge configurations, and the in-
terpolators O†

n⇡+ and O†
bb

produce the quantum num-

bers of n-pion and bb states as discussed in the pre-
ceding sub-sections. States with the combined quan-
tum numbers of the given quarkonium state (bb =
⌘b, ⌥, hb, �b0, �b1, �b2) and the n-pion system prop-
agate in this correlator and naturally, the spectrum of
this system is di↵erent from the sum of the spectra of n
pions and of quarkonium because of interactions. At Eu-
clidean times where only the ground state of the system
is resolved (after excited states have decayed and before
thermal states are manifest), this correlator will decay
exponentially as

C(n; bb; t) �! Z̃n;bb exp(�En;bbt) , (16)

where En;bb is the ground-state energy of the combined
system.

To access the change in the quarkonium energy as a
function of isospin density or chemical potential, we fur-
ther construct the ratios

R(n, bb; t) =
hObb(t)On⇡+(t)Õ†
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(0)O†

n⇡+(0)i
hObb(t)Õ†
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(0)ihOn⇡+(t)O†

n⇡+(0)i
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Since the two terms in the denominator decay exponen-
tially at large times as exp(�Ebbt) and exp(�En⇡+t) re-
spectively, the ratio will behave as

R(n; bb; t) �! Zn;bb exp(��En;bbt) + . . . , (18)

where �En;bb = En;bb � En⇡+ � Ebb is the quantity of
central interest in our investigation.

As a check of our methods, we constructed ratios in
which we artificially removed the correlations between
the bb system and the many-pion state by evaluating
P

c Cbb(c)Cn⇡(c + �c), where CX(c) represents the cor-
relation function for the quantity X measured on config-
uration c, and �c is either a constant displacement or a
random shift. In both cases, the removal of the corre-
lation eliminates the signal for an energy shift. This is
shown for the ⌘b with n = 5 in Fig. 5 for random shifts,
and the same qualitative e↵ect is seen for all choices of
the density and quarkonium state that are considered.

IV. QUARKONIUM-PION SCATTERING

The quarkonium state in the presence of a single pion
allows us to study the scattering phase shift of this two-
body system using the finite-volume formalism developed
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correct correlation between the ⌘b and many-pion system on
the 203 ⇥ 256 ensemble, as discussed in the main text. The
time-dependence, which is related to the energy shift through
Eq. (18), only appears when correlations are included.
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consider have angular momentum J = 0, 1 and define the
total angular momentum of the entire system since the
pion is spin-zero. Since the pion and bb states have di↵er-
ent masses, the appropriate generalisation of the Lüscher
relation to asymmetric systems [35] is required. We can
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that is satisfied by the bb-⇡ scattering phase shift,
�bb,⇡(p), at the scattering momentum.
Since we have three di↵erent lattice volumes, we can

extract the phase shift at multiple momenta. In Figure
6, we show the phase shifts that we extract for the ⌘b-⇡
and ⌥-⇡ scattering channels. These interactions neces-
sarily vanish in the chiral limit as the quarkonium states
are chiral singlet objects [36]. We therefore expect only
small scattering phase shifts at the quark masses consid-
ered in our study. The measured values of the S-wave
phase shifts are given in Tables V and VI, while for the
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clidean times where only the ground state of the system
is resolved (after excited states have decayed and before
thermal states are manifest), this correlator will decay
exponentially as
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where En;bb is the ground-state energy of the combined
system.

To access the change in the quarkonium energy as a
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Since the two terms in the denominator decay exponen-
tially at large times as exp(�Ebbt) and exp(�En⇡+t) re-
spectively, the ratio will behave as

R(n; bb; t) �! Zn;bb exp(��En;bbt) + . . . , (18)

where �En;bb = En;bb � En⇡+ � Ebb is the quantity of
central interest in our investigation.

As a check of our methods, we constructed ratios in
which we artificially removed the correlations between
the bb system and the many-pion state by evaluating
P

c Cbb(c)Cn⇡(c + �c), where CX(c) represents the cor-
relation function for the quantity X measured on config-
uration c, and �c is either a constant displacement or a
random shift. In both cases, the removal of the corre-
lation eliminates the signal for an energy shift. This is
shown for the ⌘b with n = 5 in Fig. 5 for random shifts,
and the same qualitative e↵ect is seen for all choices of
the density and quarkonium state that are considered.
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The quarkonium state in the presence of a single pion
allows us to study the scattering phase shift of this two-
body system using the finite-volume formalism developed
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q

(asp)2/⇠2 + a2tM
2

bb
+

q

(asp)2/⇠2 + a2tM
2

⇡ (19)

= at�Ebb,⇡ + atMbb + atM⇡ ,

where Mbb ⌘ M bb
kin

is the kinetic mass of the bb state.
The energy shifts �Ebb,⇡ are extracted from fits to the

ratios R(1; bb; t); see Sec. VA for details of the fitting
method and the results for �Ebb,⇡.
The scattering momentum then determines the eigen-

value equation

p cot �bb,⇡(p) =
1

⇡L
S

✓

p2L2

4⇡2

◆

, (20)

S(x) = lim
⇤!1

2

4

|n|<⇤

X

n 6=0

1

|n|2 + x
� 4⇡⇤

3

5 , (21)

that is satisfied by the bb-⇡ scattering phase shift,
�bb,⇡(p), at the scattering momentum.
Since we have three di↵erent lattice volumes, we can

extract the phase shift at multiple momenta. In Figure
6, we show the phase shifts that we extract for the ⌘b-⇡
and ⌥-⇡ scattering channels. These interactions neces-
sarily vanish in the chiral limit as the quarkonium states
are chiral singlet objects [36]. We therefore expect only
small scattering phase shifts at the quark masses consid-
ered in our study. The measured values of the S-wave
phase shifts are given in Tables V and VI, while for the

7

D. Correlator ratios for energy shifts

To investigate the e↵ect of the medium on quarkonium
propagation, we consider the correlators

C(n; bb; t) = hObb(t)On⇡+(t)Õ†
bb
(0)O†

n⇡+(0)i , (15)

where h. . .i denotes path integration via the average
over our ensembles of gauge configurations, and the in-
terpolators O†

n⇡+ and O†
bb

produce the quantum num-

bers of n-pion and bb states as discussed in the pre-
ceding sub-sections. States with the combined quan-
tum numbers of the given quarkonium state (bb =
⌘b, ⌥, hb, �b0, �b1, �b2) and the n-pion system prop-
agate in this correlator and naturally, the spectrum of
this system is di↵erent from the sum of the spectra of n
pions and of quarkonium because of interactions. At Eu-
clidean times where only the ground state of the system
is resolved (after excited states have decayed and before
thermal states are manifest), this correlator will decay
exponentially as

C(n; bb; t) �! Z̃n;bb exp(�En;bbt) , (16)

where En;bb is the ground-state energy of the combined
system.

To access the change in the quarkonium energy as a
function of isospin density or chemical potential, we fur-
ther construct the ratios

R(n, bb; t) =
hObb(t)On⇡+(t)Õ†

bb
(0)O†

n⇡+(0)i
hObb(t)Õ†

bb
(0)ihOn⇡+(t)O†

n⇡+(0)i
. (17)

Since the two terms in the denominator decay exponen-
tially at large times as exp(�Ebbt) and exp(�En⇡+t) re-
spectively, the ratio will behave as

R(n; bb; t) �! Zn;bb exp(��En;bbt) + . . . , (18)

where �En;bb = En;bb � En⇡+ � Ebb is the quantity of
central interest in our investigation.

As a check of our methods, we constructed ratios in
which we artificially removed the correlations between
the bb system and the many-pion state by evaluating
P

c Cbb(c)Cn⇡(c + �c), where CX(c) represents the cor-
relation function for the quantity X measured on config-
uration c, and �c is either a constant displacement or a
random shift. In both cases, the removal of the corre-
lation eliminates the signal for an energy shift. This is
shown for the ⌘b with n = 5 in Fig. 5 for random shifts,
and the same qualitative e↵ect is seen for all choices of
the density and quarkonium state that are considered.

IV. QUARKONIUM-PION SCATTERING

The quarkonium state in the presence of a single pion
allows us to study the scattering phase shift of this two-
body system using the finite-volume formalism developed
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FIG. 5: The ratio R(5, ⌘b; t) computed with and without the
correct correlation between the ⌘b and many-pion system on
the 203 ⇥ 256 ensemble, as discussed in the main text. The
time-dependence, which is related to the energy shift through
Eq. (18), only appears when correlations are included.

by Lüscher [33, 34]. The S-wave quarkonium states we
consider have angular momentum J = 0, 1 and define the
total angular momentum of the entire system since the
pion is spin-zero. Since the pion and bb states have di↵er-
ent masses, the appropriate generalisation of the Lüscher
relation to asymmetric systems [35] is required. We can
define a scattering momentum p through the relation

q

(asp)2/⇠2 + a2tM
2

bb
+

q

(asp)2/⇠2 + a2tM
2

⇡ (19)

= at�Ebb,⇡ + atMbb + atM⇡ ,

where Mbb ⌘ M bb
kin

is the kinetic mass of the bb state.
The energy shifts �Ebb,⇡ are extracted from fits to the

ratios R(1; bb; t); see Sec. VA for details of the fitting
method and the results for �Ebb,⇡.
The scattering momentum then determines the eigen-

value equation

p cot �bb,⇡(p) =
1

⇡L
S

✓

p2L2

4⇡2
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, (20)

S(x) = lim
⇤!1

2

4

|n|<⇤

X

n 6=0

1

|n|2 + x
� 4⇡⇤
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5 , (21)

that is satisfied by the bb-⇡ scattering phase shift,
�bb,⇡(p), at the scattering momentum.
Since we have three di↵erent lattice volumes, we can

extract the phase shift at multiple momenta. In Figure
6, we show the phase shifts that we extract for the ⌘b-⇡
and ⌥-⇡ scattering channels. These interactions neces-
sarily vanish in the chiral limit as the quarkonium states
are chiral singlet objects [36]. We therefore expect only
small scattering phase shifts at the quark masses consid-
ered in our study. The measured values of the S-wave
phase shifts are given in Tables V and VI, while for the
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FIG. 7: The correlators for the ⌥ in a medium corresponding to isospin charge n for n = 6, 12, and 18 are shown. Data are
presented for asm = 2.75 on the 203 ⇥ 256 (upper) and 163 ⇥ 128 (lower) ensembles. Correlators for the ⌘b in medium behave
similarly.
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FIG. 8: The correlator ratios for the ⌥ in a medium corresponding to isospin charges n = 6, 12, 18. The shaded bands show
the statistical uncertainties of fits of the form given in Eq. (18). Data are shown for asm = 2.75 on the 203 ⇥ 256 (upper) and
163 ⇥ 128 (lower) ensembles.

The correlator ratios, R(n, bb; t), discussed above, are
shown for both ⌥ and ⌘b at a heavy quark mass asm =
2.75 on the 203 ⇥ 256 ensemble for a range of di↵erent
isospin charges, n = 6, 12, and 18, in Figs. 8 and 9 along
with fits to time dependence using Eq. (18). Fits are per-
formed over a range of times where both the individual
multi-pion correlation functions and quarkonium corre-
lation functions exhibit ground-state saturation and are
free from thermal (backward propagating) state contam-
ination. This is ensured by choosing the central fit range
[t
min

, t
max

] such that a fit over the range [t
min

�5, t
max

+5]

has an acceptable quality of fit. On the 203 ⇥256 ensem-
ble, we choose t

min

= 20 and t
max

= 60, beyond which
thermal contributions are apparent. For the ensembles
with T = 128, we choose t

max

= 40. Statistical uncer-
tainties are estimated using the bootstrap procedure. To
estimate the systematic uncertainties of the fits, we cal-
culate the standard deviation between the three energies
extracted from fits with the ranges [t

min

� 5, t
max

� 5],
[t
min

, t
max

], and [t
min

+ 5, t
max

+ 5] on each bootstrap
sample. The systematic uncertainty is then obtained as
the average of this standard deviation over the bootstrap
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FIG. 7: The correlators for the ⌥ in a medium corresponding to isospin charge n for n = 6, 12, and 18 are shown. Data are
presented for asm = 2.75 on the 203 ⇥ 256 (upper) and 163 ⇥ 128 (lower) ensembles. Correlators for the ⌘b in medium behave
similarly.
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FIG. 8: The correlator ratios for the ⌥ in a medium corresponding to isospin charges n = 6, 12, 18. The shaded bands show
the statistical uncertainties of fits of the form given in Eq. (18). Data are shown for asm = 2.75 on the 203 ⇥ 256 (upper) and
163 ⇥ 128 (lower) ensembles.

The correlator ratios, R(n, bb; t), discussed above, are
shown for both ⌥ and ⌘b at a heavy quark mass asm =
2.75 on the 203 ⇥ 256 ensemble for a range of di↵erent
isospin charges, n = 6, 12, and 18, in Figs. 8 and 9 along
with fits to time dependence using Eq. (18). Fits are per-
formed over a range of times where both the individual
multi-pion correlation functions and quarkonium corre-
lation functions exhibit ground-state saturation and are
free from thermal (backward propagating) state contam-
ination. This is ensured by choosing the central fit range
[t
min

, t
max

] such that a fit over the range [t
min

�5, t
max

+5]

has an acceptable quality of fit. On the 203 ⇥256 ensem-
ble, we choose t

min

= 20 and t
max

= 60, beyond which
thermal contributions are apparent. For the ensembles
with T = 128, we choose t

max

= 40. Statistical uncer-
tainties are estimated using the bootstrap procedure. To
estimate the systematic uncertainties of the fits, we cal-
culate the standard deviation between the three energies
extracted from fits with the ranges [t

min

� 5, t
max

� 5],
[t
min

, t
max

], and [t
min

+ 5, t
max

+ 5] on each bootstrap
sample. The systematic uncertainty is then obtained as
the average of this standard deviation over the bootstrap
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FIG. 7: The correlators for the ⌥ in a medium corresponding to isospin charge n for n = 6, 12, and 18 are shown. Data are
presented for asm = 2.75 on the 203 ⇥ 256 (upper) and 163 ⇥ 128 (lower) ensembles. Correlators for the ⌘b in medium behave
similarly.
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FIG. 8: The correlator ratios for the ⌥ in a medium corresponding to isospin charges n = 6, 12, 18. The shaded bands show
the statistical uncertainties of fits of the form given in Eq. (18). Data are shown for asm = 2.75 on the 203 ⇥ 256 (upper) and
163 ⇥ 128 (lower) ensembles.

The correlator ratios, R(n, bb; t), discussed above, are
shown for both ⌥ and ⌘b at a heavy quark mass asm =
2.75 on the 203 ⇥ 256 ensemble for a range of di↵erent
isospin charges, n = 6, 12, and 18, in Figs. 8 and 9 along
with fits to time dependence using Eq. (18). Fits are per-
formed over a range of times where both the individual
multi-pion correlation functions and quarkonium corre-
lation functions exhibit ground-state saturation and are
free from thermal (backward propagating) state contam-
ination. This is ensured by choosing the central fit range
[t
min

, t
max

] such that a fit over the range [t
min

�5, t
max

+5]

has an acceptable quality of fit. On the 203 ⇥256 ensem-
ble, we choose t

min

= 20 and t
max

= 60, beyond which
thermal contributions are apparent. For the ensembles
with T = 128, we choose t

max

= 40. Statistical uncer-
tainties are estimated using the bootstrap procedure. To
estimate the systematic uncertainties of the fits, we cal-
culate the standard deviation between the three energies
extracted from fits with the ranges [t

min

� 5, t
max

� 5],
[t
min

, t
max

], and [t
min

+ 5, t
max

+ 5] on each bootstrap
sample. The systematic uncertainty is then obtained as
the average of this standard deviation over the bootstrap
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D. Correlator ratios for energy shifts

To investigate the e↵ect of the medium on quarkonium
propagation, we consider the correlators

C(n; bb; t) = hObb(t)On⇡+(t)Õ†
bb
(0)O†

n⇡+(0)i , (15)

where h. . .i denotes path integration via the average
over our ensembles of gauge configurations, and the in-
terpolators O†

n⇡+ and O†
bb

produce the quantum num-

bers of n-pion and bb states as discussed in the pre-
ceding sub-sections. States with the combined quan-
tum numbers of the given quarkonium state (bb =
⌘b, ⌥, hb, �b0, �b1, �b2) and the n-pion system prop-
agate in this correlator and naturally, the spectrum of
this system is di↵erent from the sum of the spectra of n
pions and of quarkonium because of interactions. At Eu-
clidean times where only the ground state of the system
is resolved (after excited states have decayed and before
thermal states are manifest), this correlator will decay
exponentially as

C(n; bb; t) �! Z̃n;bb exp(�En;bbt) , (16)

where En;bb is the ground-state energy of the combined
system.

To access the change in the quarkonium energy as a
function of isospin density or chemical potential, we fur-
ther construct the ratios

R(n, bb; t) =
hObb(t)On⇡+(t)Õ†

bb
(0)O†

n⇡+(0)i
hObb(t)Õ†

bb
(0)ihOn⇡+(t)O†

n⇡+(0)i
. (17)

Since the two terms in the denominator decay exponen-
tially at large times as exp(�Ebbt) and exp(�En⇡+t) re-
spectively, the ratio will behave as

R(n; bb; t) �! Zn;bb exp(��En;bbt) + . . . , (18)

where �En;bb = En;bb � En⇡+ � Ebb is the quantity of
central interest in our investigation.

As a check of our methods, we constructed ratios in
which we artificially removed the correlations between
the bb system and the many-pion state by evaluating
P

c Cbb(c)Cn⇡(c + �c), where CX(c) represents the cor-
relation function for the quantity X measured on config-
uration c, and �c is either a constant displacement or a
random shift. In both cases, the removal of the corre-
lation eliminates the signal for an energy shift. This is
shown for the ⌘b with n = 5 in Fig. 5 for random shifts,
and the same qualitative e↵ect is seen for all choices of
the density and quarkonium state that are considered.

IV. QUARKONIUM-PION SCATTERING

The quarkonium state in the presence of a single pion
allows us to study the scattering phase shift of this two-
body system using the finite-volume formalism developed
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FIG. 5: The ratio R(5, ⌘b; t) computed with and without the
correct correlation between the ⌘b and many-pion system on
the 203 ⇥ 256 ensemble, as discussed in the main text. The
time-dependence, which is related to the energy shift through
Eq. (18), only appears when correlations are included.

by Lüscher [33, 34]. The S-wave quarkonium states we
consider have angular momentum J = 0, 1 and define the
total angular momentum of the entire system since the
pion is spin-zero. Since the pion and bb states have di↵er-
ent masses, the appropriate generalisation of the Lüscher
relation to asymmetric systems [35] is required. We can
define a scattering momentum p through the relation

q

(asp)2/⇠2 + a2tM
2

bb
+

q

(asp)2/⇠2 + a2tM
2

⇡ (19)

= at�Ebb,⇡ + atMbb + atM⇡ ,

where Mbb ⌘ M bb
kin

is the kinetic mass of the bb state.
The energy shifts �Ebb,⇡ are extracted from fits to the

ratios R(1; bb; t); see Sec. VA for details of the fitting
method and the results for �Ebb,⇡.
The scattering momentum then determines the eigen-

value equation

p cot �bb,⇡(p) =
1

⇡L
S

✓

p2L2

4⇡2

◆

, (20)

S(x) = lim
⇤!1

2

4

|n|<⇤

X

n 6=0

1

|n|2 + x
� 4⇡⇤

3

5 , (21)

that is satisfied by the bb-⇡ scattering phase shift,
�bb,⇡(p), at the scattering momentum.
Since we have three di↵erent lattice volumes, we can

extract the phase shift at multiple momenta. In Figure
6, we show the phase shifts that we extract for the ⌘b-⇡
and ⌥-⇡ scattering channels. These interactions neces-
sarily vanish in the chiral limit as the quarkonium states
are chiral singlet objects [36]. We therefore expect only
small scattering phase shifts at the quark masses consid-
ered in our study. The measured values of the S-wave
phase shifts are given in Tables V and VI, while for the
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the bb system and the many-pion state by evaluating
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relation function for the quantity X measured on config-
uration c, and �c is either a constant displacement or a
random shift. In both cases, the removal of the corre-
lation eliminates the signal for an energy shift. This is
shown for the ⌘b with n = 5 in Fig. 5 for random shifts,
and the same qualitative e↵ect is seen for all choices of
the density and quarkonium state that are considered.

IV. QUARKONIUM-PION SCATTERING

The quarkonium state in the presence of a single pion
allows us to study the scattering phase shift of this two-
body system using the finite-volume formalism developed
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time-dependence, which is related to the energy shift through
Eq. (18), only appears when correlations are included.
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pion is spin-zero. Since the pion and bb states have di↵er-
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that is satisfied by the bb-⇡ scattering phase shift,
�bb,⇡(p), at the scattering momentum.
Since we have three di↵erent lattice volumes, we can

extract the phase shift at multiple momenta. In Figure
6, we show the phase shifts that we extract for the ⌘b-⇡
and ⌥-⇡ scattering channels. These interactions neces-
sarily vanish in the chiral limit as the quarkonium states
are chiral singlet objects [36]. We therefore expect only
small scattering phase shifts at the quark masses consid-
ered in our study. The measured values of the S-wave
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that is satisfied by the bb-⇡ scattering phase shift,
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Since we have three di↵erent lattice volumes, we can

extract the phase shift at multiple momenta. In Figure
6, we show the phase shifts that we extract for the ⌘b-⇡
and ⌥-⇡ scattering channels. These interactions neces-
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FIG. 7: The correlators for the ⌥ in a medium corresponding to isospin charge n for n = 6, 12, and 18 are shown. Data are
presented for asm = 2.75 on the 203 ⇥ 256 (upper) and 163 ⇥ 128 (lower) ensembles. Correlators for the ⌘b in medium behave
similarly.
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FIG. 8: The correlator ratios for the ⌥ in a medium corresponding to isospin charges n = 6, 12, 18. The shaded bands show
the statistical uncertainties of fits of the form given in Eq. (18). Data are shown for asm = 2.75 on the 203 ⇥ 256 (upper) and
163 ⇥ 128 (lower) ensembles.

The correlator ratios, R(n, bb; t), discussed above, are
shown for both ⌥ and ⌘b at a heavy quark mass asm =
2.75 on the 203 ⇥ 256 ensemble for a range of di↵erent
isospin charges, n = 6, 12, and 18, in Figs. 8 and 9 along
with fits to time dependence using Eq. (18). Fits are per-
formed over a range of times where both the individual
multi-pion correlation functions and quarkonium corre-
lation functions exhibit ground-state saturation and are
free from thermal (backward propagating) state contam-
ination. This is ensured by choosing the central fit range
[t
min

, t
max

] such that a fit over the range [t
min

�5, t
max

+5]

has an acceptable quality of fit. On the 203 ⇥256 ensem-
ble, we choose t

min

= 20 and t
max

= 60, beyond which
thermal contributions are apparent. For the ensembles
with T = 128, we choose t

max

= 40. Statistical uncer-
tainties are estimated using the bootstrap procedure. To
estimate the systematic uncertainties of the fits, we cal-
culate the standard deviation between the three energies
extracted from fits with the ranges [t

min

� 5, t
max

� 5],
[t
min

, t
max

], and [t
min

+ 5, t
max

+ 5] on each bootstrap
sample. The systematic uncertainty is then obtained as
the average of this standard deviation over the bootstrap

9

Ê

Ê

Ê

Ê

Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê Ê

0 20 40 60 80 100 120
10-12
10-5
100

109
1016
1023

têat

C
H6,U

;t
L

1U + 6p
Ê

Ê

Ê

Ê

Ê

Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê Ê

Ê Ê
Ê
Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê

0 20 40 60 80 100 120
10-24
10-13
0.01
109
1020
1031
1042

têat

C
H12,
U
;t
L

1U + 12p
Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê Ê

Ê
Ê Ê

Ê
Ê
Ê Ê Ê

Ê
Ê
Ê
Ê Ê Ê

Ê Ê Ê Ê
Ê
Ê Ê Ê Ê Ê Ê

Ê Ê Ê Ê

0 20 40 60 80 100 120
10-44
10-27
10-10
107
1024
1041

têat

C
H18,
U
;t
L

1U + 18p

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê
Ê

Ê
Ê

Ê
Ê

Ê
Ê

Ê
Ê

Ê
Ê

Ê
Ê

0 10 20 30 40 50 60
1000

107

1011

1015

1019

têat

C
H6,U

;t
L

1U + 6p
Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê
Ê

Ê
Ê

Ê
Ê

Ê
Ê

Ê
Ê

Ê
Ê

Ê
Ê Ê

Ê Ê Ê

0 10 20 30 40 50 60
1

106
1012
1018
1024
1030
1036

têat

C
H12,
U
;t
L

1U + 12p
Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê
Ê

Ê
Ê

Ê
Ê

Ê

Ê
Ê Ê

Ê
Ê

Ê
Ê Ê Ê Ê Ê Ê Ê

0 10 20 30 40 50 60
10-10

1

1010
1020
1030
1040

têat

C
H18,
U
;t
L

1U + 18p

FIG. 7: The correlators for the ⌥ in a medium corresponding to isospin charge n for n = 6, 12, and 18 are shown. Data are
presented for asm = 2.75 on the 203 ⇥ 256 (upper) and 163 ⇥ 128 (lower) ensembles. Correlators for the ⌘b in medium behave
similarly.
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FIG. 8: The correlator ratios for the ⌥ in a medium corresponding to isospin charges n = 6, 12, 18. The shaded bands show
the statistical uncertainties of fits of the form given in Eq. (18). Data are shown for asm = 2.75 on the 203 ⇥ 256 (upper) and
163 ⇥ 128 (lower) ensembles.

The correlator ratios, R(n, bb; t), discussed above, are
shown for both ⌥ and ⌘b at a heavy quark mass asm =
2.75 on the 203 ⇥ 256 ensemble for a range of di↵erent
isospin charges, n = 6, 12, and 18, in Figs. 8 and 9 along
with fits to time dependence using Eq. (18). Fits are per-
formed over a range of times where both the individual
multi-pion correlation functions and quarkonium corre-
lation functions exhibit ground-state saturation and are
free from thermal (backward propagating) state contam-
ination. This is ensured by choosing the central fit range
[t
min

, t
max

] such that a fit over the range [t
min

�5, t
max

+5]

has an acceptable quality of fit. On the 203 ⇥256 ensem-
ble, we choose t

min

= 20 and t
max

= 60, beyond which
thermal contributions are apparent. For the ensembles
with T = 128, we choose t

max

= 40. Statistical uncer-
tainties are estimated using the bootstrap procedure. To
estimate the systematic uncertainties of the fits, we cal-
culate the standard deviation between the three energies
extracted from fits with the ranges [t

min

� 5, t
max

� 5],
[t
min

, t
max

], and [t
min

+ 5, t
max

+ 5] on each bootstrap
sample. The systematic uncertainty is then obtained as
the average of this standard deviation over the bootstrap
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FIG. 7: The correlators for the ⌥ in a medium corresponding to isospin charge n for n = 6, 12, and 18 are shown. Data are
presented for asm = 2.75 on the 203 ⇥ 256 (upper) and 163 ⇥ 128 (lower) ensembles. Correlators for the ⌘b in medium behave
similarly.
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FIG. 8: The correlator ratios for the ⌥ in a medium corresponding to isospin charges n = 6, 12, 18. The shaded bands show
the statistical uncertainties of fits of the form given in Eq. (18). Data are shown for asm = 2.75 on the 203 ⇥ 256 (upper) and
163 ⇥ 128 (lower) ensembles.

The correlator ratios, R(n, bb; t), discussed above, are
shown for both ⌥ and ⌘b at a heavy quark mass asm =
2.75 on the 203 ⇥ 256 ensemble for a range of di↵erent
isospin charges, n = 6, 12, and 18, in Figs. 8 and 9 along
with fits to time dependence using Eq. (18). Fits are per-
formed over a range of times where both the individual
multi-pion correlation functions and quarkonium corre-
lation functions exhibit ground-state saturation and are
free from thermal (backward propagating) state contam-
ination. This is ensured by choosing the central fit range
[t
min

, t
max

] such that a fit over the range [t
min

�5, t
max

+5]

has an acceptable quality of fit. On the 203 ⇥256 ensem-
ble, we choose t

min

= 20 and t
max

= 60, beyond which
thermal contributions are apparent. For the ensembles
with T = 128, we choose t

max

= 40. Statistical uncer-
tainties are estimated using the bootstrap procedure. To
estimate the systematic uncertainties of the fits, we cal-
culate the standard deviation between the three energies
extracted from fits with the ranges [t

min

� 5, t
max

� 5],
[t
min

, t
max

], and [t
min

+ 5, t
max

+ 5] on each bootstrap
sample. The systematic uncertainty is then obtained as
the average of this standard deviation over the bootstrap



Density dependence

• Dependence on density

• Also investigate for P-wave & 
hyperfine splitting

• Mass dependence is as 
expected in potential model
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FIG. 10: The dependence of the energy shift on the isospin charge density is shown for the three lattice volumes for the ⌘b (left
panel) and ⌥ (right panel). The results are for asm = 2.75. The shaded vertical band in each plot shows the region where
there is a peak in the ratio of the pionic energy density to the Stefan-Boltzmann expectation (see Fig. 22 of Ref. [6]).
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FIG. 11: The slope d(�E)/d⇢I of the ⌘b energy shift (left panel) and ⌥ energy shift (right panel), approximated using correlated
finite di↵erences. The data sets and shaded bands are as described in Fig. 10.
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FIG. 12: Isospin density dependence of the shift of the S-wave
hyperfine splitting between the ⌥ and ⌘b states in medium.
The results are for asm = 2.75.

To summarise the analysis of the correlator ratios for
the S-wave quarkonium states, Fig. 10 shows the isospin
density dependence of the energy shifts, �En;¯bb, for both
the ⌥ and ⌘b channels. Figure 11 additionally shows the
derivative d(�E)/d⇢I , approximated by the finite di↵er-
ence (�En;¯bb � �E

(n�1);

¯bb)L
3, taking into account the

strong correlations between the energies at di↵erent n.
Results are presented for the ranges of isospin charge
density where a statistically meaningful extraction of the
energy shift can be made. As can be seen in Fig. 10, there
is a significant negative energy shift for much of the range
of isospin density that we have investigated. The mag-
nitude of this shift first increases as the isospin density
is increased, before flattening o↵ at a value of about 3
MeV and possibly decreasing for large ⇢I , albeit with in-
creasing uncertainty. A consistent picture is found from
the derivatives shown in Fig. 11. It is interesting to note
that the saturation occurs at the point at which a marked
change in the energy density of the many-pion system
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FIG. 14: Upper panel: the shift in the spin-averaged 1P en-
ergy as a function of the isospin charge density. Lower panel:
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density is peaked relative to the Stefan-Boltzmann expecta-
tion. The results are for asm = 2.75.
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FIG. 10: The dependence of the energy shift on the isospin charge density is shown for the three lattice volumes for the ⌘b (left
panel) and ⌥ (right panel). The results are for asm = 2.75. The shaded vertical band in each plot shows the region where
there is a peak in the ratio of the pionic energy density to the Stefan-Boltzmann expectation (see Fig. 22 of Ref. [6]).
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FIG. 11: The slope d(�E)/d⇢I of the ⌘b energy shift (left panel) and ⌥ energy shift (right panel), approximated using correlated
finite di↵erences. The data sets and shaded bands are as described in Fig. 10.
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FIG. 12: Isospin density dependence of the shift of the S-wave
hyperfine splitting between the ⌥ and ⌘b states in medium.
The results are for asm = 2.75.

To summarise the analysis of the correlator ratios for
the S-wave quarkonium states, Fig. 10 shows the isospin
density dependence of the energy shifts, �En;¯bb, for both
the ⌥ and ⌘b channels. Figure 11 additionally shows the
derivative d(�E)/d⇢I , approximated by the finite di↵er-
ence (�En;¯bb � �E

(n�1);

¯bb)L
3, taking into account the

strong correlations between the energies at di↵erent n.
Results are presented for the ranges of isospin charge
density where a statistically meaningful extraction of the
energy shift can be made. As can be seen in Fig. 10, there
is a significant negative energy shift for much of the range
of isospin density that we have investigated. The mag-
nitude of this shift first increases as the isospin density
is increased, before flattening o↵ at a value of about 3
MeV and possibly decreasing for large ⇢I , albeit with in-
creasing uncertainty. A consistent picture is found from
the derivatives shown in Fig. 11. It is interesting to note
that the saturation occurs at the point at which a marked
change in the energy density of the many-pion system



Baryon masses in medium

• Systems with quantum numbers of single baryon and many 
mesons

• Annihilation-less cases: n(K+)N, p(K+)N,  Σ+(π+)n,  Ξ0(π+)n  

• Isospin density dependence of masses: compare with 
expectations of ChPT

• Extract two- and three- body interactions 
(MB, MMB) 

• Contractions more complicated 
(require generalised blocks)

[WD, Amy Nicholson, to appear & Lattice2013]



• Anisotropic lattices (HSC)

• clover fermions, tadpole improved gauge

• as~0.125 fm,  at~as/3.5, 

• mπ~390 MeV, 323x256

• ~ 200 measurements per configuration

• Noisier than many meson

• Thermal effects more problematic

Baryon masses in medium



�M (n)
e� (t) = ln

✓
CB,n(t)/CB,n(t + 1)

[CB(t)/CB(t + 1)][Cn(t)/Cn(t + 1)]
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Isospin dependence

• Energy shifts vs Nπ, NK and fits to extract ChPT LECs, eg:

Ξ0,π+ Σ+,π+

p,K+ n,K+
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fields transform as: ξL(x) → L ξL(x)U(x), and ξR(x) → U †(x)ξR(x)R†, where U(x) is the
matrix entering the transformation of the nucleon field, Ni → U(x)i

jNj. The left-handed
and right-handed derivatives act according to the rules

DL
µξL = ∂µξL + iLµξL,

DR
µ ξR = ∂µξR − iξRRµ. (11)

For the case of an external vector field, the left- and right-handed vector sources coincide:
Lµ = Rµ = Vµ. In an isospin chemical potential, the spurions are given the final values

ξL(x) = ξ0 ξ(x),

ξR(x) = ξ(x)ξ0, (12)

so that the vacuum value is U0 = ξ2
0.

At leading-order using Lagrangian Eq. (8), the shift in nucleon mass due to the chemical
potential is the trivial result

MN = M (0)
N − µI cosα

τ 3

2
, (13)

where M (0)
N is the chiral limit value. Beyond leading-order, the nucleon mass receives cor-

rections that depend on low-energy constants. These constants are the coefficients of terms
in the second-order nucleon chiral Lagnrangian. Including relativistic corrections with fixed
coefficients, the complete3 second-order Lagrangian is

L(2) = N †

[

−
D2

⊥

2M (0)
N

+
1

2M
[Sµ, Sν ] [Dµ, Dν ] −

igA

M (0)
N

{

v · A, S · D
}

+ 4c1 < M+ >

+4

(

c2 −
g2

A

8M (0)
N

)

(v · A)2 + 4c3A
2 + 4c4[S

µ, Sν ]AµAν + 4c5M̃+

]

N, (14)

where M̃+ = M+ − 1
2 < M+ >, and M+ = 1

2λ(ξ†LMξ†R + ξRM †ξL). The last term with
coefficient c5 only contributes in the presence of strong isospin breaking.

Utilizing the second-order nucleon Lagrangian, we arrive at the nucleon mass

MN = M (0)
N − µI cosα

τ 3

2
+ 4c1

(

m2
π cosα + λε sinα

)

+

(

c2 −
g2

A

8M
+ c3

)

µ2
I sin2 α (15)

The second-order correction is entirely isoscalar, and allows access to the low-energy constant
c1, and the combination c2 +c3. One can vary the quark mass and isospin chemical potential
to isolate these coefficients from the observed behavior of the nucleon mass in lattice QCD.4

3 When one considers external sources with non-vanishing field strength tensors, additional terms are

present. The external sources we consider, however, are uniform in spacetime.
4 One can go further and impose isospin twisted boundary conditions on the quark fields, e.g. ψ(x+Lẑ) =

exp[iθτ3]ψ(x). This has the advantage of introducing non-vanishing spatial components of the vacuum

value of Aµ, and leads to the ability to isolate more low-energy constants. For the example mentioned,

the c3 coefficient can be determined from the mixing angle between nucleons.

5



Hadron structure in QCD

• DIS probes LC parton distributions qH(x)

• OPE: Mellin moments of PDFs defined 
by forward matrix elements of local 
operators

• NB: renormalisation scale dependent

• n=1 corresponds to LC momentum fraction carried by quarks 
inside H  

hxniH =
Z 1

�1
dx x

n
qH(x)

hH| �{µ0Dµ1 . . . Dµn}|Hi = p{µ0 . . . pµn}hxniH
x
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Hadron structure in QCD

• Intensively studied in QCD using 3-pt functions 

• Limited to low moments by reduced lattice symmetry

• Most studies for nucleon, but also pion, rho, ...

• Generalisations to GPDs ....

C2(t,p) =
X

x

eip·xh0|�H(0)�†
H(x, t)|0i

C3(t,p) =
X

y,x

eip·xh0|�H(0)O(y, ⌧)�†
H(x, t)|0i

R =
C3(t,p)
C2(t,p)

t!1�! hH|O|Hi



• n π+ 3-point correlator 

Many meson 3-point correlator

C(n)
3 (t; ⌧) =

*
0

�����

"
X

x

d�5u(x, t)u�5d(0, 0)

#n X

y

O(y, ⌧)

����� 0

+

Σ
permutations

O

t�⌧�0�! A e�Enthn⇡|O|n⇡i+ . . . Excitations and thermal effects 



• n π+ 3-point correlator 

Many meson 3-point correlator

C(n)
3 (t; ⌧) =

*
0

�����

"
X

x

d�5u(x, t)u�5d(0, 0)

#n X

y

O(y, ⌧)

����� 0

+

t�⌧�0�! A e�Enthn⇡|O|n⇡i+ . . . Excitations and thermal effects 

• Contractions performed by treating the struck meson 
as a separate species

• System now looks like (n-1) pions + 1 “kaon”

• Can be written as products of traces of two matrices 
[WD & B Smigielski, arXiv:1103.4362]

⇧ =
X

x

�5S(x, t; 0)�5S
†(x, t; 0), ⇧̃⌧ =

x,y �5S(x, t;y, ⌧)�OS(y, ⌧ ; 0)�5S
†(x, t; 0)

Colour/Dirac structure of operator



Lattice details

• Calculations use MILC gauge configurations

• L=2.5 fm, a=0.12 fm, rooted staggered 

• also L=3.5 fm and a=0.09 fm

• Domain-wall quark propagators [LHP,  NPLQCD]

• mπ ~ 291, 318, 352, 358, 491 MeV

• few sources / lattice

• Need additional sequential propagators

• Focus on momentum fraction: O44



Double ratio

• Define ratio to extract matrix elements

• Double ratio 

• No need to renormalise operator!

• Allows investigation of ratio of moments

R(n)(t, ⌧) =
C(n)

3 (t; ⌧)

C(n)
2 (t)

t�⌧�! 1
En⇡

hn ⇡+|O44|n ⇡+i

R

(n)(t, ⌧)
R

(1)(t, ⌧)
�! m⇡ hn ⇡

+|O44|n ⇡

+i
En⇡ h⇡+|O44|⇡+i �! En⇡ hxin⇡+

m⇡hxi⇡+



Double ratio
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Pionic EMC effect

• LC momentum fraction carried by quarks in a pion in a dense 
medium c.f. in free space

, �a � 0.09 fm⇥ �m⇥ � 320 MeV⇥m⇥ � 290 MeV
m⇥ � 350 MeV
m⇥ � 490 MeV
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Summary

• Overview of recent progress with isospin density/chemical 
potential in QCD

• Grand canonical approach

• Studies at low temperature? Large volumes?

• Effect on hadron properties?

• Rho condensation?

• Many pion approach

• How high in density?

• Excitation spectrum?
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Four pion correlation
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Four pion correlation
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Four pion correlation
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Ratios without correlations
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FIG. 5.16: In this figure, correlated contraction and uncorrelated contraction by shifting
50 configurations are compared. When correlations among C⌘c(t) and Cn⇡(t) are taken
away, we indeed recover the result for uncorrelated correlation functions such that the
ratio is consistent with 1.0.

for R(n, J/ ; t) are shown in Fig. 5.18. Energy shifts �Ecc,n are extracted from the

ratio R(n, cc; t) by fitting to Equation. [5.21]. The fitting range is chosen to be t =

[20, 40]± 5 to minimize contaminations both from excited states and thermal states

for all n’s, which are also consistent with choices made in the bottomonium study

to make the comparison easier. The central value of the �Ecc,n’s are extracted from

time slices t = [20, 40]. The statistical uncertainties are computed from bootstrap

methods, and the systematic uncertainties are calculated by shifting fitting windows

forward and backward 5 time slices. The single exponential fits to the ratio are also

shown in Fig. 5.17 and Fig. 5.18 as shaded bands The extracted energy shifts and

statistical uncertainties and tabulated in Table. 5.10, and are shown as a function

of isospin density in Fig. 5.19.

The quantitative behavior of the charmonium energy shift for ⌘c and J/ in

media of di↵erent isospin density is consistent with those for bottomonium states,



Bottomonium-Pion Interactions

• Bottomonium+Pion System allows 
extraction of interactions via Lüscher 
method

• Expectation from Weinberg (I=0 
state) and model studies is that the 
interactions should be small (0 in 
chiral limit)

• Mass dependence known so can 
interpolate 
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FIG. 6: Extracted inverse phase shifts for ⌘b-⇡ and ⌥-⇡
scattering (at m⇡ ⇡ 390 MeV). Fitting the phase shift to

p cot �(p)/m⇡ = � 1

m⇡a + m⇡r
2

p2

m2
⇡
, as shown by the shaded

band, we can extract the scattering length shown by the point
at p2/m2

⇡ = 0.

P -wave states we are unable to extract statistically mean-
ingful results. Since the measured scattering momenta
are small, it is possible to perform a fit to the e↵ective-
range expansion,

p cot �(p)/m⇡ = � 1

m⇡a
+

m⇡r

2

p2

m2

⇡

+ . . . , (22)

to extract the scattering length and e↵ective range for
these interactions. This extrapolation is shown in Fig. 6
and results in m⇡a⌘b,⇡ = 0.039(13) and m⇡r⌘b,⇡ =
4.7(3.7) for the ⌘b state, and m⇡a⌥,⇡ = 0.047(14) and
m⇡r⌥,⇡ = 5.8(3.3) in the case of the ⌥, both channels
corresponding to a weak attractive interaction.

The pion-quarkonium scattering length depends ap-
proximately quadratically on the pion mass [37–39], and
hence we can estimate the scattering length at the phys-
ical pion mass as

a
(phys.)

bb,⇡
⇡ (m(phys.)

⇡ /m⇡)
2 abb,⇡, (23)

where abb,⇡ is our lattice result for the scattering length
at m⇡ = 390 MeV. This gives

a(phys.)⌘b,⇡ = 0.0025(8)(6) fm, a
(phys.)
⌥,⇡ = 0.0030(9)(7) fm,

(24)

where the first uncertainty is statistical and the sec-
ond uncertainty corresponds to missing higher-order cor-
rections to Eq. (23), which we estimate to be smaller
than the leading-order term by a factor of m⇡/(4⇡f⇡) ⇡
0.24. Related lattice QCD calculations of charmonium-
pion scattering lengths were reported in Refs. [37–39],
and model-dependent studies of quarkonium-pion inter-
actions can be found in Refs. [40–43]. In general, simi-
larly small attractive interactions were found there.

TABLE V: The ⌘b-⇡ phase shifts (at m⇡ ⇡ 390 MeV) ex-
tracted using the Lüscher method.

N3

s ⇥Nt p2/m2

⇡ (p cot �(p))�1[fm] m⇡/(p cot �(p))

163 ⇥ 128 �0.0055(6) 0.0138(18) 0.0274(36)

203 ⇥ 256 �0.0032(3) 0.0148(15) 0.0294(31)

243 ⇥ 128 �0.0022(4) 0.0192(38) 0.0381(75)

TABLE VI: The ⌥-⇡ phase shifts (at m⇡ ⇡ 390 MeV) ex-
tracted using the Lüscher method.

N3

s ⇥Nt p2/m2

⇡ (p cot �(p))�1[fm] m⇡/(p cot �(p))

163 ⇥ 128 �0.0062(7) 0.0153(20) 0.0303(40)

203 ⇥ 256 �0.0037(4) 0.0172(18) 0.0341(36)

243 ⇥ 128 �0.0027(4) 0.0220(42) 0.0435(83)

V. ISOSPIN DENSITY DEPENDENCE OF
QUARKONIUM

For larger isospin charge, we interpret the system of
pions in terms of a medium of varying isospin charge den-
sity once the ground state is reached. In the correlators
C(n; bb; t), the quarkonium state exists in this medium,
interacting with it. We consider first the S-wave quarko-
nium states as they are statistically better resolved than
P -wave states.

A. S-wave states

The correlators C(n, bb, t) are shown in Fig. 7 for
bb = ⌥ at representative values of the isospin charge
and for asm = 2.75 on the 203 ⇥ 256 and 163 ⇥ 128
ensembles. The in-medium correlators on the 203 ⇥ 256
ensemble exhibit a long region of Euclidean time in which
they decay as a single exponential. This region overlaps
with the regions in which the multi-pion correlators and
the individual quarkonium correlators are saturated by
their respective ground states. This gives us confidence
that by considering the correlator ratios of Eq. (17) we
can legitimately extract the quarkonium energy shifts in
medium. On the ensembles with T = 128, thermal con-
tamination is more significant and restricts the range of
useful time-slices, particularly for large isospin charge.
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FIG. 6: Extracted inverse phase shifts for ⌘b-⇡ and ⌥-⇡
scattering (at m⇡ ⇡ 390 MeV). Fitting the phase shift to

p cot �(p)/m⇡ = � 1

m⇡a + m⇡r
2

p2

m2
⇡
, as shown by the shaded

band, we can extract the scattering length shown by the point
at p2/m2

⇡ = 0.

P -wave states we are unable to extract statistically mean-
ingful results. Since the measured scattering momenta
are small, it is possible to perform a fit to the e↵ective-
range expansion,

p cot �(p)/m⇡ = � 1

m⇡a
+

m⇡r

2

p2

m2

⇡

+ . . . , (22)

to extract the scattering length and e↵ective range for
these interactions. This extrapolation is shown in Fig. 6
and results in m⇡a⌘b,⇡ = 0.039(13) and m⇡r⌘b,⇡ =
4.7(3.7) for the ⌘b state, and m⇡a⌥,⇡ = 0.047(14) and
m⇡r⌥,⇡ = 5.8(3.3) in the case of the ⌥, both channels
corresponding to a weak attractive interaction.

The pion-quarkonium scattering length depends ap-
proximately quadratically on the pion mass [37–39], and
hence we can estimate the scattering length at the phys-
ical pion mass as

a
(phys.)

bb,⇡
⇡ (m(phys.)

⇡ /m⇡)
2 abb,⇡, (23)

where abb,⇡ is our lattice result for the scattering length
at m⇡ = 390 MeV. This gives

a(phys.)⌘b,⇡ = 0.0025(8)(6) fm, a
(phys.)
⌥,⇡ = 0.0030(9)(7) fm,

(24)

where the first uncertainty is statistical and the sec-
ond uncertainty corresponds to missing higher-order cor-
rections to Eq. (23), which we estimate to be smaller
than the leading-order term by a factor of m⇡/(4⇡f⇡) ⇡
0.24. Related lattice QCD calculations of charmonium-
pion scattering lengths were reported in Refs. [37–39],
and model-dependent studies of quarkonium-pion inter-
actions can be found in Refs. [40–43]. In general, simi-
larly small attractive interactions were found there.

TABLE V: The ⌘b-⇡ phase shifts (at m⇡ ⇡ 390 MeV) ex-
tracted using the Lüscher method.

N3

s ⇥Nt p2/m2

⇡ (p cot �(p))�1[fm] m⇡/(p cot �(p))

163 ⇥ 128 �0.0055(6) 0.0138(18) 0.0274(36)

203 ⇥ 256 �0.0032(3) 0.0148(15) 0.0294(31)

243 ⇥ 128 �0.0022(4) 0.0192(38) 0.0381(75)

TABLE VI: The ⌥-⇡ phase shifts (at m⇡ ⇡ 390 MeV) ex-
tracted using the Lüscher method.

N3

s ⇥Nt p2/m2

⇡ (p cot �(p))�1[fm] m⇡/(p cot �(p))

163 ⇥ 128 �0.0062(7) 0.0153(20) 0.0303(40)

203 ⇥ 256 �0.0037(4) 0.0172(18) 0.0341(36)

243 ⇥ 128 �0.0027(4) 0.0220(42) 0.0435(83)

V. ISOSPIN DENSITY DEPENDENCE OF
QUARKONIUM

For larger isospin charge, we interpret the system of
pions in terms of a medium of varying isospin charge den-
sity once the ground state is reached. In the correlators
C(n; bb; t), the quarkonium state exists in this medium,
interacting with it. We consider first the S-wave quarko-
nium states as they are statistically better resolved than
P -wave states.

A. S-wave states

The correlators C(n, bb, t) are shown in Fig. 7 for
bb = ⌥ at representative values of the isospin charge
and for asm = 2.75 on the 203 ⇥ 256 and 163 ⇥ 128
ensembles. The in-medium correlators on the 203 ⇥ 256
ensemble exhibit a long region of Euclidean time in which
they decay as a single exponential. This region overlaps
with the regions in which the multi-pion correlators and
the individual quarkonium correlators are saturated by
their respective ground states. This gives us confidence
that by considering the correlator ratios of Eq. (17) we
can legitimately extract the quarkonium energy shifts in
medium. On the ensembles with T = 128, thermal con-
tamination is more significant and restricts the range of
useful time-slices, particularly for large isospin charge.
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FIG. 6: Extracted inverse phase shifts for ⌘b-⇡ and ⌥-⇡
scattering (at m⇡ ⇡ 390 MeV). Fitting the phase shift to

p cot �(p)/m⇡ = � 1

m⇡a + m⇡r
2

p2

m2
⇡
, as shown by the shaded

band, we can extract the scattering length shown by the point
at p2/m2

⇡ = 0.

P -wave states we are unable to extract statistically mean-
ingful results. Since the measured scattering momenta
are small, it is possible to perform a fit to the e↵ective-
range expansion,

p cot �(p)/m⇡ = � 1

m⇡a
+

m⇡r

2

p2

m2

⇡

+ . . . , (22)

to extract the scattering length and e↵ective range for
these interactions. This extrapolation is shown in Fig. 6
and results in m⇡a⌘b,⇡ = 0.039(13) and m⇡r⌘b,⇡ =
4.7(3.7) for the ⌘b state, and m⇡a⌥,⇡ = 0.047(14) and
m⇡r⌥,⇡ = 5.8(3.3) in the case of the ⌥, both channels
corresponding to a weak attractive interaction.

The pion-quarkonium scattering length depends ap-
proximately quadratically on the pion mass [37–39], and
hence we can estimate the scattering length at the phys-
ical pion mass as

a
(phys.)

bb,⇡
⇡ (m(phys.)

⇡ /m⇡)
2 abb,⇡, (23)

where abb,⇡ is our lattice result for the scattering length
at m⇡ = 390 MeV. This gives

a(phys.)⌘b,⇡ = 0.0025(8)(6) fm, a
(phys.)
⌥,⇡ = 0.0030(9)(7) fm,

(24)

where the first uncertainty is statistical and the sec-
ond uncertainty corresponds to missing higher-order cor-
rections to Eq. (23), which we estimate to be smaller
than the leading-order term by a factor of m⇡/(4⇡f⇡) ⇡
0.24. Related lattice QCD calculations of charmonium-
pion scattering lengths were reported in Refs. [37–39],
and model-dependent studies of quarkonium-pion inter-
actions can be found in Refs. [40–43]. In general, simi-
larly small attractive interactions were found there.

TABLE V: The ⌘b-⇡ phase shifts (at m⇡ ⇡ 390 MeV) ex-
tracted using the Lüscher method.

N3

s ⇥Nt p2/m2

⇡ (p cot �(p))�1[fm] m⇡/(p cot �(p))

163 ⇥ 128 �0.0055(6) 0.0138(18) 0.0274(36)

203 ⇥ 256 �0.0032(3) 0.0148(15) 0.0294(31)

243 ⇥ 128 �0.0022(4) 0.0192(38) 0.0381(75)

TABLE VI: The ⌥-⇡ phase shifts (at m⇡ ⇡ 390 MeV) ex-
tracted using the Lüscher method.

N3

s ⇥Nt p2/m2

⇡ (p cot �(p))�1[fm] m⇡/(p cot �(p))

163 ⇥ 128 �0.0062(7) 0.0153(20) 0.0303(40)

203 ⇥ 256 �0.0037(4) 0.0172(18) 0.0341(36)

243 ⇥ 128 �0.0027(4) 0.0220(42) 0.0435(83)

V. ISOSPIN DENSITY DEPENDENCE OF
QUARKONIUM

For larger isospin charge, we interpret the system of
pions in terms of a medium of varying isospin charge den-
sity once the ground state is reached. In the correlators
C(n; bb; t), the quarkonium state exists in this medium,
interacting with it. We consider first the S-wave quarko-
nium states as they are statistically better resolved than
P -wave states.

A. S-wave states

The correlators C(n, bb, t) are shown in Fig. 7 for
bb = ⌥ at representative values of the isospin charge
and for asm = 2.75 on the 203 ⇥ 256 and 163 ⇥ 128
ensembles. The in-medium correlators on the 203 ⇥ 256
ensemble exhibit a long region of Euclidean time in which
they decay as a single exponential. This region overlaps
with the regions in which the multi-pion correlators and
the individual quarkonium correlators are saturated by
their respective ground states. This gives us confidence
that by considering the correlator ratios of Eq. (17) we
can legitimately extract the quarkonium energy shifts in
medium. On the ensembles with T = 128, thermal con-
tamination is more significant and restricts the range of
useful time-slices, particularly for large isospin charge.


