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The QCD Sign Problem

The QCD partition function

Z =

�
[dU] e−SG (U)

�
dψ dψe−ψxMxy [U,U†] ψy
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0
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DetM[U,U†] = |Det(D[U,U†)|2 ≥ 0
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In the presence of a chemical potential

M[U,U†,µ] =

�
0 D[Ueµ,U†e−µ]

−
�
D[Ue−µ,U†eµ]

�†
0

�
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In the presence of a chemical potential

M[U,U†,µ] =

�
0 D[Ueµ,U†e−µ]

−
�
D[Ue−µ,U†eµ]

�†
0

�

Then,

is no longer guaranteed to be positive!

Det(M[U,U†,µ]) = Det(D[Ueµ,U†e−µ]) Det(D†[Ue−µ,U†eµ])
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In the presence of a chemical potential

M[U,U†,µ] =

�
0 D[Ueµ,U†e−µ]

−
�
D[Ue−µ,U†eµ]

�†
0

�

Then,

is no longer guaranteed to be positive!

Det(M[U,U†,µ]) = Det(D[Ueµ,U†e−µ]) Det(D†[Ue−µ,U†eµ])

Loss of “pairing” is the origin of the sign problem
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Sign Problems in Yukawa Models
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Sign Problems in Yukawa Models

Consider the partition function

Z =

�
[dU] e−SG (U)

�
[dφ] e−Sb(φ)

�
dψ dψe−ψxMxy [U,U†] ψy−gφxψxψx
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Sign Problems in Yukawa Models

Consider the partition function

Z =

�
[dU] e−SG (U)

�
[dφ] e−Sb(φ)

�
dψ dψe−ψxMxy [U,U†] ψy−gφxψxψx

where are diagonal complex matrices.ϕe , ϕo

The fermion matrix is now given by

(φ+M[U,U†]) =

�
gϕe D[U,U†]

−
�
D[U,U†]

�†
gϕo

�
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Again, is not guaranteed

to be positive.

Det(φ+M[U,U†])

Wednesday, August 7, 2013



Again, is not guaranteed

to be positive.

Det(φ+M[U,U†])

sign problem with fluctuating mass
with N=1 staggered fermions
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Again, is not guaranteed

to be positive.

Det(φ+M[U,U†])

sign problem with fluctuating mass
with N=1 staggered fermions

The Yukawa coupling can also destroy
the “pairing” mechanism
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Chemical potential is not the only
source of sign problems!

Take Home Lessons
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Chemical potential is not the only
source of sign problems!

Any interaction that destroys “pairing”
can in principle lead to sign problems!

Take Home Lessons
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A new class of “Yukawa” sign problems 
are now solvable

using the “fermion bag approach”.

Chemical potential is not the only
source of sign problems!

Any interaction that destroys “pairing”
can in principle lead to sign problems!

Take Home Lessons
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The Fermion Bag Idea
SC, 2010
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Group Fermion Worldlines
(fermion bags) 

and sum over each group individually.

The Fermion Bag Idea
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Group Fermion Worldlines
(fermion bags) 

and sum over each group individually.

The Fermion Bag Idea
SC, 2010

(Extension of the meron cluster idea)
SC, Wiese, 2000
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Group Fermion Worldlines
(fermion bags) 

and sum over each group individually.

The Fermion Bag Idea
SC, 2010

 Choose fermion bags carefully
that help solve sign problems

(Extension of the meron cluster idea)
SC, Wiese, 2000
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Consider
�

[dψdψ] e−ψiMijψj (−ψi1ψi1)(−ψi2ψi3ψi3ψi2)

(−ψi2ψi3ψi3ψi2) (−ψi4ψi4)(−ψi5ψi5)

(−ψi6ψi7ψi7ψi6) (−ψi8ψi9ψi9ψi8)
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big 
fermion bag

small fermion bags

i1

i2
i3

i4
i5

i6 i7

i8 i9

Consider
�

[dψdψ] e−ψiMijψj (−ψi1ψi1)(−ψi2ψi3ψi3ψi2)

(−ψi2ψi3ψi3ψi2) (−ψi4ψi4)(−ψi5ψi5)

(−ψi6ψi7ψi7ψi6) (−ψi8ψi9ψi9ψi8)

= Det(W )

is the matrix 
obtained by dropping

some rows and 
the same columns from

W

M
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M =





0 0 0 ... 0 M11 M12 M13 ... M1N

0 0 0 ... 0 M21 M22 M23 ... M2N

0 0 0 ... 0 M31 M32 M33 ... M3N

. . . ... . . . . ... .

. . . ... . . . . ... .

. . . ... . . . . ... .
0 0 0 ... 0 MN1 MN2 MN3 ... MNN

−M∗
11 −M∗

21 −M∗
31 ... −M∗

N1 0 0 0... 0
−M∗

12 −M∗
22 −M∗

32 ... −M∗
N2 0 0 0... 0

−M∗
13 −M∗

23 −M∗
33 ... −M∗

N3 0 0 0... 0
. . . ... . . . . ... .
. . . ... . . . . ... .
. . . ... . . . . ... .

−M∗
1N −M∗

2N −M∗
3N ... −M∗

NN 0 0 0... 0
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Thus if

M =

�
0 D

−D† 0

�
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W =

�
0 D̃

−D̃† 0

�

then

Thus if

M =

�
0 D

−D† 0

�
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�
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A new class of “solvable” problems
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A new class of “solvable” problems
Consider actions of the form

complex
scalar field

solvable space dependent
mass term

S =
�

xy

ψx Mxy[σ] ψx + g
�

x

φxψxψx + Sb(σ,φ)
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A new class of “solvable” problems

The action              is chosen such that
the sign problem in the k-pt correlation function

Sb[σ,φ]

is solvable.

G(z1, .., zk,σ) =

�
[dφ] e−Sb(σ,φ) φz1 φz2 ... φzk

Consider actions of the form

complex
scalar field

solvable space dependent
mass term

S =
�

xy

ψx Mxy[σ] ψx + g
�

x

φxψxψx + Sb(σ,φ)
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Solvable bosonic theories are those
in which we can write

G(z1, .., zk,σ) =
�

b

�
[dρ] Ω(σ, b, ρ, n),

Ω(σ, b, ρ, n) ≥ 0
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where the [n] is a monomer field labeling 
the location of z1, z2,...,zk
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where the [n] is a monomer field labeling 
the location of z1, z2,...,zk

Solvable bosonic theories are those
in which we can write

G(z1, .., zk,σ) =
�

b

�
[dρ] Ω(σ, b, ρ, n),

Ω(σ, b, ρ, n) ≥ 0

and           are “other” bosonic fields (b, ρ)

introduced to solve the sign problem.
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where the [n] is a monomer field labeling 
the location of z1, z2,...,zk

Solvable bosonic theories are those
in which we can write

G(z1, .., zk,σ) =
�

b

�
[dρ] Ω(σ, b, ρ, n),

Ω(σ, b, ρ, n) ≥ 0

and           are “other” bosonic fields (b, ρ)

introduced to solve the sign problem.

Dual variables
(Kloiber’s Talk)
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These class of models are not solvable with the 
traditional approach 

S = ψ(M [σ] + gΦ)ψ + Sb(σ,φ)

M [σ] + gΦ =

�
g φ1 D[σ]

−D†[σ] g φ∗
2

�

Z =

�
[dσ dφ]e−Sb[σ,φ] Det(M [σ] + gΦ)
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These class of models are not solvable with the 
traditional approach 

suffers from sign problem

The Fermion bag approach solves the sign problem!

S = ψ(M [σ] + gΦ)ψ + Sb(σ,φ)

M [σ] + gΦ =

�
g φ1 D[σ]

−D†[σ] g φ∗
2

�

Z =

�
[dσ dφ]e−Sb[σ,φ] Det(M [σ] + gΦ)
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Fermion Bag approach
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Fermion Bag approach

Rewrite the partition function as 

Z =

�
[dσ dφ] e−Sb(σ,φ)

�
[dψdψ] e−ψ M [σ] ψ

�

x

�
e−g φx ψxψx

�
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Fermion Bag approach

Rewrite the partition function as 

Z =

�
[dσ dφ] e−Sb(σ,φ)

�
[dψdψ] e−ψ M [σ] ψ

�

x

�
e−g φx ψxψx

�

Due to the Grassmann nature

e−g φx ψxψx = 1 + g φx(−ψxψx) =
�

nx=0,1

�
g φx (−ψxψx)

�nx
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Fermion Bag approach

Rewrite the partition function as 

Z =

�
[dσ dφ] e−Sb(σ,φ)

�
[dψdψ] e−ψ M [σ] ψ

�

x

�
e−g φx ψxψx

�

Due to the Grassmann nature

e−g φx ψxψx = 1 + g φx(−ψxψx) =
�

nx=0,1

�
g φx (−ψxψx)

�nx

We can then rewrite

Z =
�

[n]

�
[dσ]

�
[dφ] e−Sb(σ,φ)

�
[dψdψ] e−ψ M ψ

�

x

�
g φx (−ψxψx)

�nx
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Consider a configuration [n]
where z1 z2 ... zk are the k sites 

where nx = 1
and all other sites have nx = 0
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Consider a configuration [n]
where z1 z2 ... zk are the k sites 

where nx = 1
and all other sites have nx = 0

Z =
�

[n]

gk
�

[dσ]

�
[dφ] e−Sb(σ,φ) φz1 φz2 ... φzk

�
[dψdψ] e−ψ M [σ] ψ (−ψz1ψz1) (−ψz2ψz2) ... (−ψzkψzk)

example of configuration [n] with k = 10
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Consider a configuration [n]
where z1 z2 ... zk are the k sites 

where nx = 1
and all other sites have nx = 0

Z =
�

[n]

gk
�

[dσ]

�
[dφ] e−Sb(σ,φ) φz1 φz2 ... φzk

�
[dψdψ] e−ψ M [σ] ψ (−ψz1ψz1) (−ψz2ψz2) ... (−ψzkψzk)

example of configuration [n] with k = 10

G(z1, .., zk,σ)

Fermion Correlation Function
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Fermion correlation function
�

[dψdψ] e−ψ M [σ] ψ ψz1ψz1 ... ψzkψzk
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fermion bag configuration

Fermion bags
Fermion correlation function
�

[dψdψ] e−ψ M [σ] ψ ψz1ψz1 ... ψzkψzk
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fermion bag configuration

Fermion bags
Fermion correlation function
�

[dψdψ] e−ψ M [σ] ψ ψz1ψz1 ... ψzkψzk

= Det(W [n,σ]) ≥ 0
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W is a (V-k) x (V-k) matrix 
 obtained by dropping sites z1 ... zk in M 

fermion bag configuration

Fermion bags
Fermion correlation function
�

[dψdψ] e−ψ M [σ] ψ ψz1ψz1 ... ψzkψzk

= Det(W [n,σ]) ≥ 0
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W is a (V-k) x (V-k) matrix 
 obtained by dropping sites z1 ... zk in M 

fermion bag configuration

Fermion bags
Fermion correlation function
�

[dψdψ] e−ψ M [σ] ψ ψz1ψz1 ... ψzkψzk

= Det(W [n,σ]) ≥ 0

M [σ] =

�
0 D[σ]

−D†[σ] 0

�

W [n,σ] =

�
0 D̃[n,σ]

−D̃†[n,σ] 0

�
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W is a (V-k) x (V-k) matrix 
 obtained by dropping sites z1 ... zk in M 

fermion bag configuration

Fermion bags
Fermion correlation function
�

[dψdψ] e−ψ M [σ] ψ ψz1ψz1 ... ψzkψzk

= Det(W [n,σ]) ≥ 0

M [σ] =

�
0 D[σ]

−D†[σ] 0

�

W [n,σ] =

�
0 D̃[n,σ]

−D̃†[n,σ] 0

�

Connection to Diagrammatic Determinantal MC
Talks by Endres and Detmold
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Thus, the partition function 
is given by

Z =
�

n,b

�
[dσ dρ] gk Ω(σ, b, ρ, n) Det(W [n,σ])
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fermion bag configuration

Fermion bags

Thus, the partition function 
is given by

Z =
�

n,b

�
[dσ dρ] gk Ω(σ, b, ρ, n) Det(W [n,σ])
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No sign problem!

fermion bag configuration

Fermion bags

Thus, the partition function 
is given by

Z =
�

n,b

�
[dσ dρ] gk Ω(σ, b, ρ, n) Det(W [n,σ])
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No sign problem!

fermion bag configuration

Fermion bags

Interesting mapping into 
classical statistical mechanics

Thus, the partition function 
is given by

Z =
�

n,b

�
[dσ dρ] gk Ω(σ, b, ρ, n) Det(W [n,σ])
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Another class of “solvable” problems
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Another class of “solvable” problems

Consider actions of the form

S =
�

xy

ψx Mxy [σ] ψx − i
�

x

�
g1φ1xψ

T
x σ2ψx − g2 φ2xψxσ2ψ

T
x

�
+ Sb(σ,φ1,φ2)

where ψx , ψx are two component Grassmann fields
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Mxy = Axy ⊗ I + i Ba
xy ⊗ σaAssume A, Bawith real
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Another class of “solvable” problems

Consider actions of the form

S =
�

xy

ψx Mxy [σ] ψx − i
�

x

�
g1φ1xψ

T
x σ2ψx − g2 φ2xψxσ2ψ

T
x

�
+ Sb(σ,φ1,φ2)

where ψx , ψx are two component Grassmann fields

Mxy = Axy ⊗ I + i Ba
xy ⊗ σaAssume A, Bawith real

M =

�
C D

−D∗ C∗

�
W =

�
C̃ D̃

−D̃∗ C̃∗

�
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Another class of “solvable” problems

Consider actions of the form

S =
�

xy

ψx Mxy [σ] ψx − i
�

x

�
g1φ1xψ

T
x σ2ψx − g2 φ2xψxσ2ψ

T
x

�
+ Sb(σ,φ1,φ2)

where ψx , ψx are two component Grassmann fields

Mxy = Axy ⊗ I + i Ba
xy ⊗ σaAssume A, Bawith real

Such problems naturally describe “pairing” of 
fermions like in a superconductor  

M =

�
C D

−D∗ C∗

�
W =

�
C̃ D̃

−D̃∗ C̃∗

�
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M =





C11 C12 C13 ... C1N M11 M12 M13 ... M1N

C21 C22 C23 ... C2N M21 M22 M23 ... M2N

C31 C32 C33 ... C3N M31 M32 M33 ... M3N

. . . ... . . . . ... .

. . . ... . . . . ... .

. . . ... . . . . ... .
CN1 CN2 CN3 ... CNN MN1 MN2 MN3 ... MNN

−M∗
11 −M∗

12 −M∗
13 ... −M∗

1N C∗
11 C∗

12 C∗
13 ... C∗

1N
−M∗

21 −M∗
22 −M∗

23 ... −M∗
2N C∗

21 C∗
22 C∗

23 ... C∗
2N

−M∗
31 −M∗

32 −M∗
33 ... −M∗

3N C∗
31 C∗

32 C∗
33 ... C∗

3N
. . . ... . . . . ... .
. . . ... . . . . ... .
. . . ... . . . . ... .

−M∗
1N −M∗

2N −M∗
3N ... −M∗

NN C∗
N1 C∗

N2 C∗
N3 ... C∗

NN





Wednesday, August 7, 2013



M =





C11 C12 C13 ... C1N M11 M12 M13 ... M1N

C21 C22 C23 ... C2N M21 M22 M23 ... M2N

C31 C32 C33 ... C3N M31 M32 M33 ... M3N

. . . ... . . . . ... .

. . . ... . . . . ... .

. . . ... . . . . ... .
CN1 CN2 CN3 ... CNN MN1 MN2 MN3 ... MNN

−M∗
11 −M∗

12 −M∗
13 ... −M∗

1N C∗
11 C∗

12 C∗
13 ... C∗

1N
−M∗

21 −M∗
22 −M∗

23 ... −M∗
2N C∗

21 C∗
22 C∗

23 ... C∗
2N

−M∗
31 −M∗

32 −M∗
33 ... −M∗

3N C∗
31 C∗

32 C∗
33 ... C∗

3N
. . . ... . . . . ... .
. . . ... . . . . ... .
. . . ... . . . . ... .

−M∗
1N −M∗

2N −M∗
3N ... −M∗

NN C∗
N1 C∗

N2 C∗
N3 ... C∗

NN





W =





C11 C12 C13 ... C1N M11 M12 M13 ... M1N

C21 C22 C23 ... C2N M21 M22 M23 ... M2N

C31 C32 C33 ... C3N M31 M32 M33 ... M3N

. . . ... . . . . ... .

. . . ... . . . . ... .

. . . ... . . . . ... .
CN1 CN2 CN3 ... CNN MN1 MN2 MN3 ... MNN

−M∗
11 −M∗

12 −M∗
13 ... −M∗

1N C∗
11 C∗

12 C∗
13 ... C∗

1N
−M∗

21 −M∗
22 −M∗

23 ... −M∗
2N C∗

21 C∗
22 C∗

23 ... C∗
2N

−M∗
31 −M∗

32 −M∗
33 ... −M∗

3N C∗
31 C∗

32 C∗
33 ... C∗

3N
. . . ... . . . . ... .
. . . ... . . . . ... .
. . . ... . . . . ... .

−M∗
1N −M∗

2N −M∗
3N ... −M∗

NN C∗
N1 C∗

N2 C∗
N3 ... C∗

NN





Wednesday, August 7, 2013



M =





C11 C12 C13 ... C1N M11 M12 M13 ... M1N

C21 C22 C23 ... C2N M21 M22 M23 ... M2N

C31 C32 C33 ... C3N M31 M32 M33 ... M3N

. . . ... . . . . ... .

. . . ... . . . . ... .

. . . ... . . . . ... .
CN1 CN2 CN3 ... CNN MN1 MN2 MN3 ... MNN

−M∗
11 −M∗

12 −M∗
13 ... −M∗

1N C∗
11 C∗

12 C∗
13 ... C∗

1N
−M∗

21 −M∗
22 −M∗

23 ... −M∗
2N C∗

21 C∗
22 C∗

23 ... C∗
2N

−M∗
31 −M∗

32 −M∗
33 ... −M∗

3N C∗
31 C∗

32 C∗
33 ... C∗

3N
. . . ... . . . . ... .
. . . ... . . . . ... .
. . . ... . . . . ... .

−M∗
1N −M∗

2N −M∗
3N ... −M∗

NN C∗
N1 C∗

N2 C∗
N3 ... C∗

NN





W =





C11 C12 C13 ... C1N M11 M12 M13 ... M1N

C21 C22 C23 ... C2N M21 M22 M23 ... M2N

C31 C32 C33 ... C3N M31 M32 M33 ... M3N

. . . ... . . . . ... .

. . . ... . . . . ... .

. . . ... . . . . ... .
CN1 CN2 CN3 ... CNN MN1 MN2 MN3 ... MNN

−M∗
11 −M∗

12 −M∗
13 ... −M∗

1N C∗
11 C∗

12 C∗
13 ... C∗

1N
−M∗

21 −M∗
22 −M∗

23 ... −M∗
2N C∗

21 C∗
22 C∗

23 ... C∗
2N

−M∗
31 −M∗

32 −M∗
33 ... −M∗

3N C∗
31 C∗

32 C∗
33 ... C∗

3N
. . . ... . . . . ... .
. . . ... . . . . ... .
. . . ... . . . . ... .

−M∗
1N −M∗

2N −M∗
3N ... −M∗

NN C∗
N1 C∗

N2 C∗
N3 ... C∗

NN





solvable form

Wednesday, August 7, 2013



Wednesday, August 7, 2013



Other classes of solvable models

Wednesday, August 7, 2013



Other classes of solvable models
Begin with any class of matrices with some
property that gives positive determinants

Wednesday, August 7, 2013



Other classes of solvable models
Begin with any class of matrices with some
property that gives positive determinants

Introduce interactions that
delete rows and columns

but preserve the property of positive determinants

Wednesday, August 7, 2013



Other classes of solvable models
Begin with any class of matrices with some
property that gives positive determinants

Introduce interactions that
delete rows and columns

but preserve the property of positive determinants

Such interactions can be coupled
to bosonic “solvable” bosonic degrees of freedom

Wednesday, August 7, 2013



Other classes of solvable models
Begin with any class of matrices with some
property that gives positive determinants

Introduce interactions that
delete rows and columns

but preserve the property of positive determinants

Such interactions can be coupled
to bosonic “solvable” bosonic degrees of freedom

Challenge: Understand “solvability” with non-Abelian fields
Dual Variables(?)

Subset methods, Bloch’s Talk
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A QCD-like Polyakov-Loop Model 
may be “solvable”(?)

Action

Z3 Polyakov-Loop 
variables

Z3 Potts Modelmassless staggered 
Dirac operator

S =
�

xy

ψxMxy [z , z
∗,µ]ψy + Sb(z)

Constraint: 
The Polyakov-Loop variables 

live only on alternate time slices!  

space

tim
e
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Some repulsive models also solvable!

Z =
�

B

|Det(WA)|2 |Det(WB)|2

S =
�

xy

ψxDxyψx + χxDxyχx

−
�

x

�
U(ψxψx)

2 + U(χxχx)
2 − U2(ψxψx)

2(χxχx)
2
�

No sign problem!

Fermion Bag Configuration

fermion bag 
containing species 2

fermion bag 
containing species 1

attractive repulsion
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Thirring

UUc

massless fermions/
U(1) symmetric

massive fermions/
U(1) broken

S.C. A.Li, PRL (2012), arXiv:1304.7761

MC Results: Four-Fermion Models

solvable
with HMC suffers from

sign problems
in HMC

SU(2) x U(1) symmetric models

S(ψ,ψ) =
�

xy

ψxMxyψy −
�

�xy�

U�xy�ψxψx ψyψy

e o

e

o

e

o

UL

UB
UF

Gross-Neveu

Wednesday, August 7, 2013



Combined fit results
Uc = 0.2608(2)
ν = 0.85(1)
η = 0.65(1)
ηψ = 0.37(1)

Thirring model results
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Gross-Neveu Model Results

Z2

U(1)
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Comparison: Old vs New

Model Symmetry Work ν η ηψ

N=1 Lattice-GN SU(2) x Z2
Karkkainen,et.al.

(1994) 1.00(4) 0.756(8) -

N=1 Lattice GN SU(2) x Z2
SC & Li
(2012) 0.83(1) 0.62(1) 0.38(1)

N = 1 Lattice-Th SU(2)x U(1) Debbio, et.al.,
(1997) 0.80(15) 0.70(15) -

N = 1 Lattice-Th SU(2)x U(1) Barbour et. al.,
(1998) 0.80(20) 0.4(2) -

N=1 Lattice-(GN/Th) SU(2) x U(1) SC & Li
(2013) 0.849(8) 0.633(8) 0.373(3)
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Summary

• The QCD sign problem arises due to the destruction 
of a “naive” pairing mechanism that we usually use 
to solve fermion sign problems.

• Yukawa models have similar sign problems, but 
have received far less attention.

• Fermion-bags is a general idea which has already 
solved many new sign problems in Yukawa models 
that seemed unsolvable earlier. 

• Precision Quantum Critical Behavior in a class of 
Fermi systems is within reach.
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