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What QCD at non-zero quark chemical potential reiθ = det(D + µγ0 + m)

Ensembles with θ fixed

Why Understand the histogram method

Z and nB build up as
∫

dθ

How General argumets, hadron resonance gas model, strong coupling

Sign problem = total derivatives wrt θ
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The sign problem

det(D + µγ0 + m) = |det(D + µγ0 + m)|eiθ
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The θ-distribution: 〈δ(θ − θ′)〉
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Full theory
∫

dθ〈δ(θ − θ′)〉
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The θ-distribution is complex

〈δ(θ − θ′)〉1+1 ≡ 1

Z1+1

Z

dA δ(θ − θ′)det2(D + µγ0 + m)e−SY M
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The θ-distribution is complex

〈δ(θ − θ′)〉1+1 ≡ 1

Z1+1

Z

dA δ(θ − θ′)det2(D + µγ0 + m)e−SY M

〈δ(θ − θ′)〉1+1 =
1

Z1+1

Z

dA δ(θ − θ′)|det(D + µγ0 + m)|2e2iθ′

e−SY M

=
1

Z1+1
e2iθ

Z

dA δ(θ − θ′)|det(D + µγ0 + m)|2e−SY M
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The θ-distribution is complex

〈δ(θ − θ′)〉1+1 ≡ 1

Z1+1

Z

dA δ(θ − θ′)det2(D + µγ0 + m)e−SY M

〈δ(θ − θ′)〉1+1 =
1

Z1+1

Z

dA δ(θ − θ′)|det(D + µγ0 + m)|2e2iθ′

e−SY M

=
1

Z1+1
e2iθ

Z

dA δ(θ − θ′)|det(D + µγ0 + m)|2e−SY M

〈δ(θ − θ′)〉1+1 =
Z1+1∗

Z1+1
e2iθ〈δ(θ − θ′)〉1+1∗
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The simplest thing - normalization of the θ-distribution

〈δ(θ − θ′)〉1+1 =
Z1+1∗

Z1+1
e2iθ〈δ(θ − θ′)〉1+1∗

Z

dθ 〈δ(θ − θ′)〉1+1 =

Z

dθ 〈δ(θ − θ′)〉1+1∗ = 1
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The simplest thing - normalization of the θ-distribution

〈δ(θ − θ′)〉1+1 =
Z1+1∗

Z1+1
e2iθ〈δ(θ − θ′)〉1+1∗

Z

dθ 〈δ(θ − θ′)〉1+1 =

Z

dθ 〈δ(θ − θ′)〉1+1∗ = 1

Z

dθe2iθ〈δ(θ − θ′)〉1+1∗ =
Z1+1

Z1+1∗
≃ e−V ∆Ω
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The simplest thing - normalization of the θ-distribution

〈δ(θ − θ′)〉1+1 =
Z1+1∗

Z1+1
e2iθ〈δ(θ − θ′)〉1+1∗

Z

dθ 〈δ(θ − θ′)〉1+1 =

Z

dθ 〈δ(θ − θ′)〉1+1∗ = 1

Z

dθe2iθ〈δ(θ − θ′)〉1+1∗ =
Z1+1

Z1+1∗
≃ e−V ∆Ω

Exponential cancellations!
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µ < mπ/2 VS µ > mπ/2

Alford Kapustin Wilczek PRD 59 (1999) 054502
Splittorff, Verbaarschot PRL 98 (2007) 031601

Dorota Grabowska, David Kaplan, Amy Nicholson PRD 87, 014504 (2013)

Sign problem as total derivative – p. 7/37



The θ-distribution from the lattice µ < mπ/2
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Central limit theorem → Gaussian

Ejiri PRD 77 (2008) 014508
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Histogram method

(a.k.a. Density of states method or Factorization method)
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f
/4)Im[ln(det M)]

0

100

200

300

400

µ
q
/T=1.0

µ
q
/T=2.0

Measure the width of the Gaussian and do the θ integral analytically.

Anagnostopoulos Nishimura PRD 66 (2002) 106008
Fodor Katz Schmidt JHEP 0703:121,2007

Ejiri PRD 77 (2008) 014508
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The exponential cancellations
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The exponential cancellations
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Ejiri’s Fig 1 µq/T=1.0

The Gaussian fit needs to be good
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Is 〈δ(θ − θ′)〉1+1∗ Gaussian?
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Is 〈δ(θ − θ′)〉1+1∗ Gaussian?

Check analytically!

Lombardo Splittorff Verbaarschot PRD 80 (2009) 054509

Greensite Myers Splittorff, arXiv:1306.3085 and to appear
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The delta function

〈δ(θ − θ′)〉1+1 ≡
1

Z1+1

∫

dA δ(θ − θ′)det2(D + µγ0 + m)e−SY M
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The delta function

〈δ(θ − θ′)〉1+1 ≡
1

Z1+1

∫

dA δ(θ − θ′)det2(D + µγ0 + m)e−SY M

δ(θ − θ′) =
1

2π

∫ ∞

−∞
dp eip(−θ+θ′)
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The delta function

〈δ(θ − θ′)〉1+1 ≡
1

Z1+1

∫

dA δ(θ − θ′)det2(D + µγ0 + m)e−SY M

δ(θ − θ′) =
1

2π

∫ ∞

−∞
dp eip(−θ+θ′)

〈δ(θ − θ′)〉1+1 =
1

2π

∫ ∞

−∞
dp e−ipθ〈eipθ′

〉1+1
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The moments of the phase factor

〈eipθ′

〉Nf
≡

1

ZNf

〈

detNf+p/2(D + µγ0 + m)

detp/2(D − µγ0 + m)

〉
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The moments of the phase factor

〈eipθ′

〉Nf
≡

1

ZNf

〈

detNf+p/2(D + µγ0 + m)

detp/2(D − µγ0 + m)

〉

Compute these moments for all p and pluck them back into

〈δ(θ − θ′)〉1+1 =
1

2π

∫

∞

−∞

dp e−ipθ〈eipθ′

〉1+1
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General form of the moments (µ < mπ/2)

〈eipθ′

〉Nf
= e−p/2(Nf+p/2)X1−(p/2(Nf+p/2))2X2+...

where the Xj ’s are extensive
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General form of the moments (µ < mπ/2)

〈eipθ′

〉Nf
= e−p/2(Nf+p/2)X1−(p/2(Nf+p/2))2X2+...

where the Xj ’s are extensive

Gaussian dist of θ ⇔ Xj = 0 for all j > 1

Lombardo Splittorff Verbaarschot PRD 80 (2009) 054509

Greensite Myers Splittorff, arXiv:1306.3085 and to appear
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Gaussian distribution found in

• 1-loop chiral perturbation theory

• Hadron resonance gas model

Lombardo Splittorff Verbaarschot PRD 80 (2009) 054509

Greensite Myers Splittorff, to appear
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Gaussian distribution found in

• 1-loop chiral perturbation theory

• Hadron resonance gas model

But ... strong coupling QCD for Nc = 3 beyond 3rd order in the hopping parameter

has corrections to Gaussian

Lombardo Splittorff Verbaarschot PRD 80 (2009) 054509

Greensite Myers Splittorff, to appear
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Warning: 〈δ(θ − θ′)〉 looks Gaussian at large volumes!
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Example with 20% correction to the free energy

〈δ(θ − θ′)〉 =
1

2π

Z

dp e−iθpe−p2X1−p4X2−p6X3

X1 = V ; X2 = −.2V ; X3 = 0.02V (Black)
X1 = V ; X2 = 0; X3 = 0 (Red) V = 2
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Example with 20% correction to the free energy

〈δ(θ − θ′)〉 =
1

2π

Z

dp e−iθpe−p2X1−p4X2−p6X3

X1 = V ; X2 = −.2V ; X3 = 0.02V (Black)
X1 = V ; X2 = 0; X3 = 0 (Red) V = 5
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Example with 20% correction to the free energy

〈δ(θ − θ′)〉 =
1

2π

Z

dp e−iθpe−p2X1−p4X2−p6X3

X1 = V ; X2 = −.2V ; X3 = 0.02V (Black)
X1 = V ; X2 = 0; X3 = 0 (Red) V = 10
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Example with 20% correction to the free energy

〈δ(θ − θ′)〉 =
1

2π

Z

dp e−iθpe−p2X1−p4X2−p6X3

X1 = V ; X2 = −.2V ; X3 = 0.02V (Black)
X1 = V ; X2 = 0; X3 = 0 (Red) V = 20
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Reason: The effect of X2 is 1/V suppressed in 〈δ(θ − θ′)〉 (for θ ≪ V )

Sign problem as total derivative – p. 21/37



Reason: The effect of X2 is 1/V suppressed in 〈δ(θ − θ′)〉 (for θ ≪ V )

Consistent with the central limit theorem
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However:

We want to obtain 〈eiθ〉 from the distribution

〈δ(θ − θ′)〉 =
1

2π

Z

dp e−iθpe−p2X1−p4X2−p6X3

Analytically this is trivial
Z

dθ eiθ〈δ(θ − θ′)〉 = e−X1−X2−X3
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However:

We want to obtain 〈eiθ〉 from the distribution

〈δ(θ − θ′)〉 =
1

2π

Z

dp e−iθpe−p2X1−p4X2−p6X3

Analytically this is trivial
Z

dθ eiθ〈δ(θ − θ′)〉 = e−X1−X2−X3

But if we only capture the Gaussian (ie. X1 ) we make a 20% error
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Conclusion: The effect of X2 is 1/V suppressed in 〈δ(θ − θ′)〉. But is
nevertheless needed to get the correct free energy.

Sign problem as total derivative – p. 23/37



The sign problem as a total derivative
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The distribution of nB with θ

〈nBδ(θ − θ′)〉1+1

≡
1

Z1+1
lim
µ̃→µ

d

dµ̃

∫

dA δ(θ − θ′(µ))det2(D + µ̃γ0 + m)e−SY M
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The distribution of nB with θ

〈nBδ(θ − θ′)〉1+1

≡
1

Z1+1
lim
µ̃→µ

d

dµ̃

∫

dA δ(θ − θ′(µ))det2(D + µ̃γ0 + m)e−SY M

We are after

〈nB〉1+1 =

∫

dθ 〈nBδ(θ − θ′)〉1+1
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The sign problem as total derivatives

〈nBδ(θ − θ′)〉Nf
=

(

c0 +
c1

−i

∂

∂θ
+

c2

(−i)2
∂2

∂θ2
+ . . .

)

〈δ(θ − θ′)〉Nf
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The sign problem as total derivatives

〈nBδ(θ − θ′)〉Nf
=

(

c0 +
c1

−i

∂

∂θ
+

c2

(−i)2
∂2

∂θ2
+ . . .

)

〈δ(θ − θ′)〉Nf

Signal Noise

〈nB〉1+1 =

∫

dθ 〈nBδ(θ − θ′)〉1+1 = c0

Sign problem as total derivative – p. 26/37



Example

In 1-loop chiral perturbation theory only c1 6= 0

〈nB〉Nf
=

Z

dθ

„

c1

−i

∂

∂θ

«

〈δ(θ − θ′)〉Nf
= 0

Only Noise
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Conclusions

Interplay between lattice and analytic QCD is essential to understand QCD

at µ 6= 0
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Conclusions

Interplay between lattice and analytic QCD is essential to understand QCD

at µ 6= 0

Here:

Fixed θ

Non-Gaussian terms even for µ < m
π
/2

Sign problem as total derivative
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Additional slides
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The distribution of nB with θ

〈nBδ(θ − θ′)〉1+1

≡
1

Z1+1
lim
µ̃→µ

d

dµ̃

∫

dA δ(θ − θ′(µ))det2(D + µ̃γ0 + m)e−SY M
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The distribution of nB with θ

〈nBδ(θ − θ′)〉1+1

≡
1

Z1+1
lim
µ̃→µ

d

dµ̃

∫

dA δ(θ − θ′(µ))det2(D + µ̃γ0 + m)e−SY M

Recall

δ(θ − θ′(µ)) =
1

2π

∫ ∞

−∞
dp e−ipθ detp/2(D + µγ0 + m)

detp/2(D − µγ0 + m)
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The general form of

1

ZNf

fi

detp/2(D + µγ0 + m)

detp/2(D − µγ0 + m)
detNf (D + µ̃γ0 + m)

fl

= exp[polynomial in p]

where

lim
µ̃→µ

epolynomial in p = e−p/2(Nf +p/2)X1−(p/2(Nf +p/2))2X2+...
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The general form of

1

ZNf

fi

detp/2(D + µγ0 + m)

detp/2(D − µγ0 + m)
detNf (D + µ̃γ0 + m)

fl

= exp[polynomial in p]

where

lim
µ̃→µ

epolynomial in p = e−p/2(Nf +p/2)X1−(p/2(Nf +p/2))2X2+...

〈nBδ(θ − θ′)〉Nf
=

Z

dp

2π
e−ipθ(c0 + c1p + c2p

2 + . . .)e−p/2(Nf +p/2)X1−...
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The general form of

1

ZNf

fi

detp/2(D + µγ0 + m)

detp/2(D − µγ0 + m)
detNf (D + µ̃γ0 + m)

fl

= exp[polynomial in p]

where

lim
µ̃→µ

epolynomial in p = e−p/2(Nf +p/2)X1−(p/2(Nf +p/2))2X2+...

〈nBδ(θ − θ′)〉Nf
=

Z

dp

2π
e−ipθ(c0 + c1p + c2p

2 + . . .)e−p/2(Nf +p/2)X1−...

... looks pretty complicated ... but in fact ...
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Total derivatives

We found

〈nBδ(θ − θ′)〉Nf
=

Z

dp

2π
e−ipθ(c0 + c1p + c2p

2 + . . .)e−p/2(Nf +p/2)X1−...
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Total derivatives

We found

〈nBδ(θ − θ′)〉Nf
=

Z

dp

2π
e−ipθ(c0 + c1p + c2p

2 + . . .)e−p/2(Nf +p/2)X1−...

But this is simply

〈nBδ(θ − θ′)〉Nf

=

Z

∞

−∞

dp

2π

„

c0 +
c1

−i

∂

∂θ
+

c2

(−i)2
∂2

∂θ2
+ . . .

«

e−ipθe−p/2(Nf +p/2)X1+...

=

„

c0 +
c1

−i

∂

∂θ
+

c2

(−i)2
∂2

∂θ2
+ . . .

«

〈δ(θ − θ′)〉Nf
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Total derivatives

We found

〈nBδ(θ − θ′)〉Nf
=

Z

dp

2π
e−ipθ(c0 + c1p + c2p

2 + . . .)e−p/2(Nf +p/2)X1−...

But this is simply

〈nBδ(θ − θ′)〉Nf

=

Z

∞

−∞

dp

2π

„

c0 +
c1

−i

∂

∂θ
+

c2

(−i)2
∂2

∂θ2
+ . . .

«

e−ipθe−p/2(Nf +p/2)X1+...

=

„

c0 +
c1

−i

∂

∂θ
+

c2

(−i)2
∂2

∂θ2
+ . . .

«

〈δ(θ − θ′)〉Nf

Signal Noise
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Total derivatives and volume

In 1-loop chiral perturbation theory

〈nBδ(θ − θ′)〉1+1

= [ lim
µ̃→µ

d

dµ̃
V ∆G0(−µ, µ̃)]

eV ∆G0

√
πV ∆G0

(1 + i
θ

V ∆G0
)e2iθe−θ2/V ∆G0
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In CPT at mean field level

〈e2ipθ′

〉Nf
= e−(|p+Nf/2|−Nf/2)V ∆Ω

Bosonic mean field rules

∆Ω is the difference between the mean field terms
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In CPT at mean field level

〈e2ipθ′

〉Nf
= e−(|p+Nf/2|−Nf/2)V ∆Ω

Bosonic mean field rules

∆Ω is the difference between the mean field terms

∆Ω = 2µ2F 2 +
Σ2m2

2µ2F 2
− 4mΣ

Lombardo Splittorff Verbaarschot PRD 80 (2009) 054509
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The θ-distribution (µ > mπ/2)

〈δ(2θ − 2θ′)〉 =
1

π

∞
∑

p=−∞
e−2ipθ〈e2ipθ′

〉Nf
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The θ-distribution (µ > mπ/2)

〈δ(2θ − 2θ′)〉 =
1

π

∞
∑

p=−∞
e−2ipθ〈e2ipθ′

〉Nf

Lorentzian (on [−π/2 : π/2])

〈δ(2θ − 2θ′)〉1+1 = e2iθ eV ∆Ω

2π

sinh(V ∆Ω)

cosh(V ∆Ω) − cos(2θ)
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The θ-distribution (µ > mπ/2)

〈δ(2θ − 2θ′)〉 =
1

π

∞
∑

p=−∞
e−2ipθ〈e2ipθ′

〉Nf

Lorentzian (on [−π/2 : π/2])

〈δ(2θ − 2θ′)〉1+1 = e2iθ eV ∆Ω

2π

sinh(V ∆Ω)

cosh(V ∆Ω) − cos(2θ)

Central limit theorem fails!
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Lorentzian folded onto [−π/2 : π/2]

-6 -4 -2 0 2 4 6

θ
0

0.1

0.2

0.3

0.4

<δ
(θ

−θ
’)

>

Multiply by e2iθ to get 〈δ(2θ − 2θ′)〉1+1
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Gaussian folded onto [−π : π]

-6 -4 -2 0 2 4 6

θ
0

0.1

0.2

<δ
(θ

−θ
’)

>

Multiply by e2iθ to get 〈δ(θ − θ′)〉1+1
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