The QCD sign problem as a total derivative

Kim Splittorff Niels Bohr Institute / DFF - Sapere Aude

Joyce Myers

Jeff Greensite

Jac Verbaarschot and Maria Paola Lombardo

XQCD, AEC univerity of Bern, August 6, 2013

What QCD at non-zero quark chemical potential $re^{i\theta} = \det(D + \mu\gamma_0 + m)$ Ensembles with θ fixed

Why Understand the histogram method

Z and n_B build up as $\int d heta$

How General argumets, hadron resonance gas model, strong coupling

Sign problem = total derivatives wrt θ

The sign problem

$$\det(D + \mu\gamma_0 + m) = |\det(D + \mu\gamma_0 + m)|e^{i\theta}$$


```
Sign problem as total derivative - p. 3/37
```

The θ -distribution: $\langle \delta(\theta - \theta') \rangle$

Sign problem as total derivative - p. 4/37

The θ -distribution is complex

$$\langle \delta(\theta - \theta') \rangle_{1+1} \equiv \frac{1}{Z_{1+1}} \int dA \, \delta(\theta - \theta') \det^2(D + \mu \gamma_0 + m) e^{-S_{YM}}$$

The θ -distribution is complex

$$\langle \delta(\theta - \theta') \rangle_{1+1} \equiv \frac{1}{Z_{1+1}} \int dA \, \delta(\theta - \theta') \det^2(D + \mu \gamma_0 + m) e^{-S_{YM}}$$

$$\begin{aligned} \langle \delta(\theta - \theta') \rangle_{1+1} &= \frac{1}{Z_{1+1}} \int dA \, \delta(\theta - \theta') |\det(D + \mu \gamma_0 + m)|^2 e^{2i\theta'} e^{-S_{YM}} \\ &= \frac{1}{Z_{1+1}} e^{2i\theta} \int dA \, \delta(\theta - \theta') |\det(D + \mu \gamma_0 + m)|^2 e^{-S_{YM}} \end{aligned}$$

The θ -distribution is complex

$$\langle \delta(\theta - \theta') \rangle_{1+1} \equiv \frac{1}{Z_{1+1}} \int dA \, \delta(\theta - \theta') \det^2(D + \mu \gamma_0 + m) e^{-S_{YM}}$$

$$\begin{aligned} \langle \delta(\theta - \theta') \rangle_{1+1} &= \frac{1}{Z_{1+1}} \int dA \, \delta(\theta - \theta') |\det(D + \mu \gamma_0 + m)|^2 e^{2i\theta'} e^{-S_{YM}} \\ &= \frac{1}{Z_{1+1}} e^{2i\theta} \int dA \, \delta(\theta - \theta') |\det(D + \mu \gamma_0 + m)|^2 e^{-S_{YM}} \end{aligned}$$

$$\langle \delta(\theta - \theta') \rangle_{1+1} = \frac{Z_{1+1*}}{Z_{1+1}} e^{2i\theta} \langle \delta(\theta - \theta') \rangle_{1+1*}$$

The simplest thing - normalization of the θ -distribution

$$\langle \delta(\theta - \theta') \rangle_{1+1} = \frac{Z_{1+1^*}}{Z_{1+1}} e^{2i\theta} \langle \delta(\theta - \theta') \rangle_{1+1^*}$$

$$\int d\theta \, \langle \delta(\theta - \theta') \rangle_{1+1} = \int d\theta \, \langle \delta(\theta - \theta') \rangle_{1+1^*} = 1$$

The simplest thing - normalization of the θ -distribution

$$\langle \delta(\theta - \theta') \rangle_{1+1} = \frac{Z_{1+1^*}}{Z_{1+1}} e^{2i\theta} \langle \delta(\theta - \theta') \rangle_{1+1^*}$$

$$\int d\theta \, \langle \delta(\theta - \theta') \rangle_{1+1} = \int d\theta \, \langle \delta(\theta - \theta') \rangle_{1+1^*} = 1$$

$$\int d\theta e^{2i\theta} \langle \delta(\theta - \theta') \rangle_{1+1^*} = \frac{Z_{1+1}}{Z_{1+1^*}} \simeq e^{-V\Delta\Omega}$$

The simplest thing - normalization of the θ -distribution

$$\langle \delta(\theta - \theta') \rangle_{1+1} = \frac{Z_{1+1^*}}{Z_{1+1}} e^{2i\theta} \langle \delta(\theta - \theta') \rangle_{1+1^*}$$

$$\int d\theta \, \langle \delta(\theta - \theta') \rangle_{1+1} = \int d\theta \, \langle \delta(\theta - \theta') \rangle_{1+1*} = 1$$

$$\int d\theta e^{2i\theta} \langle \delta(\theta - \theta') \rangle_{1+1^*} = \frac{Z_{1+1}}{Z_{1+1^*}} \simeq e^{-V\Delta\Omega}$$

Exponential cancellations!

$\mu < m_{\pi}/2$ VS $\mu > m_{\pi}/2$

Alford Kapustin Wilczek PRD 59 (1999) 054502 Splittorff, Verbaarschot PRL 98 (2007) 031601

Dorota Grabowska, David Kaplan, Amy Nicholson PRD 87, 014504 (2013)

Central limit theorem \rightarrow Gaussian

Ejiri PRD 77 (2008) 014508

Sign problem as total derivative - p. 8/37

Histogram method

Measure the width of the Gaussian and do the θ integral analytically.

Anagnostopoulos Nishimura PRD 66 (2002) 106008 Fodor Katz Schmidt JHEP 0703:121,2007 Ejiri PRD 77 (2008) 014508-

Sign problem as total derivative – p. 9/37

The exponential cancellations

The exponential cancellations

The Gaussian fit needs to be good

Is $\langle \delta(\theta - \theta') \rangle_{1+1^*}$ Gaussian?

Is $\langle \delta(\theta - \theta') \rangle_{1+1^*}$ Gaussian?

Check analytically!

Lombardo Splittorff Verbaarschot PRD 80 (2009) 054509

Greensite Myers Splittorff, arXiv:1306.3085 and to appear

The delta function

$\langle \delta(\theta - \theta') \rangle_{1+1} \equiv \frac{1}{Z_{1+1}} \int dA \, \delta(\theta - \theta') \det^2(D + \mu \gamma_0 + m) e^{-S_{YM}}$

The delta function

$$\langle \delta(\theta - \theta') \rangle_{1+1} \equiv \frac{1}{Z_{1+1}} \int dA \, \delta(\theta - \theta') \det^2(D + \mu \gamma_0 + m) e^{-S_{YM}}$$

$$\delta(\theta - \theta') = \frac{1}{2\pi} \int_{-\infty}^{\infty} dp \ e^{ip(-\theta + \theta')}$$

The delta function

$$\langle \delta(\theta - \theta') \rangle_{1+1} \equiv \frac{1}{Z_{1+1}} \int dA \, \delta(\theta - \theta') \det^2(D + \mu \gamma_0 + m) e^{-S_{YM}}$$

$$\delta(\theta - \theta') = \frac{1}{2\pi} \int_{-\infty}^{\infty} dp \ e^{ip(-\theta + \theta')}$$

$$\langle \delta(\theta - \theta') \rangle_{1+1} = \frac{1}{2\pi} \int_{-\infty}^{\infty} dp \ e^{-ip\theta} \langle e^{ip\theta'} \rangle_{1+1}$$

The moments of the phase factor

$$\langle e^{i\boldsymbol{p}\boldsymbol{\theta}'}\rangle_{N_f} \equiv \frac{1}{Z_{N_f}} \left\langle \frac{\det^{N_f + \boldsymbol{p}/2}(D + \mu\gamma_0 + m)}{\det^{\boldsymbol{p}/2}(D - \mu\gamma_0 + m)} \right\rangle$$

The moments of the phase factor

$$\langle e^{ip\theta'} \rangle_{N_f} \equiv \frac{1}{Z_{N_f}} \left\langle \frac{\det^{N_f + p/2} (D + \mu\gamma_0 + m)}{\det^{p/2} (D - \mu\gamma_0 + m)} \right\rangle$$

Compute these moments for all p and pluck them back into

$$\langle \delta(\theta - \theta') \rangle_{1+1} = \frac{1}{2\pi} \int_{-\infty}^{\infty} dp \; e^{-ip\theta} \langle e^{ip\theta'} \rangle_{1+1}$$

General form of the moments

$$(\mu < m_\pi/2)$$

$$\langle e^{ip\theta'} \rangle_{N_f} = e^{-p/2(N_f + p/2)X_1 - (p/2(N_f + p/2))^2X_2 + \dots}$$

where the X_j 's are extensive

General form of the moments

$$(\mu < m_\pi/2)$$

$$\langle e^{ip\theta'} \rangle_{N_f} = e^{-p/2(N_f + p/2)X_1 - (p/2(N_f + p/2))^2X_2 + \dots}$$

where the X_j 's are extensive

Gaussian dist of $\theta \Leftrightarrow X_j = 0$ for all j > 1

Lombardo Splittorff Verbaarschot PRD 80 (2009) 054509 Greensite Myers Splittorff, arXiv:1306.3085 and *to appear*

Sign problem as total derivative – p. 14/37

Gaussian distribution found in

- 1-loop chiral perturbation theory
- Hadron resonance gas model

Lombardo Splittorff Verbaarschot PRD 80 (2009) 054509

Greensite Myers Splittorff, to appear

Gaussian distribution found in

- 1-loop chiral perturbation theory
- Hadron resonance gas model

But ... strong coupling QCD for $N_c = 3$ beyond 3rd order in the hopping parameter has corrections to Gaussian

Lombardo Splittorff Verbaarschot PRD 80 (2009) 054509

Greensite Myers Splittorff, to appear

Warning: $\langle \delta(\theta - \theta') \rangle$ looks Gaussian at large volumes!

$$\langle \delta(\theta - \theta') \rangle = \frac{1}{2\pi} \int dp \; e^{-i\theta p} e^{-p^2 X_1 - p^4 X_2 - p^6 X_3}$$

 $X_1 = V$; $X_2 = -.2V$; $X_3 = 0.02V$ (Black) $X_1 = V$; $X_2 = 0$; $X_3 = 0$ (Red)

$$\langle \delta(\theta - \theta') \rangle = \frac{1}{2\pi} \int dp \; e^{-i\theta p} e^{-p^2 X_1 - p^4 X_2 - p^6 X_3}$$

 $X_1 = V$; $X_2 = -.2V$; $X_3 = 0.02V$ (Black) $X_1 = V$; $X_2 = 0$; $X_3 = 0$ (Red)

$$\langle \delta(\theta - \theta') \rangle = \frac{1}{2\pi} \int dp \; e^{-i\theta p} e^{-p^2 X_1 - p^4 X_2 - p^6 X_3}$$

 $X_1 = V$; $X_2 = -.2V$; $X_3 = 0.02V$ (Black) $X_1 = V$; $X_2 = 0$; $X_3 = 0$ (Red)

$$\langle \delta(\theta - \theta') \rangle = \frac{1}{2\pi} \int dp \; e^{-i\theta p} e^{-p^2 X_1 - p^4 X_2 - p^6 X_3}$$

 $X_1 = V$; $X_2 = -.2V$; $X_3 = 0.02V$ (Black) $X_1 = V$; $X_2 = 0$; $X_3 = 0$ (Red)

Reason: The effect of X_2 is 1/V suppressed in $\langle \delta(\theta - \theta') \rangle$ (for $\theta \ll V$)

Reason: The effect of X_2 is 1/V suppressed in $\langle \delta(\theta - \theta') \rangle$ (for $\theta \ll V$)

Consistent with the central limit theorem

However:

We want to obtain $\langle e^{i\theta}\rangle$ from the distribution

$$\langle \delta(\theta - \theta') \rangle = \frac{1}{2\pi} \int dp \; e^{-i\theta p} e^{-p^2 X_1 - p^4 X_2 - p^6 X_3}$$

Analytically this is trivial

$$\int d\theta \ e^{i\theta} \langle \delta(\theta - \theta') \rangle = e^{-X_1 - X_2 - X_3}$$

However:

We want to obtain $\langle e^{i\theta}\rangle$ from the distribution

$$\langle \delta(\theta - \theta') \rangle = \frac{1}{2\pi} \int dp \; e^{-i\theta p} e^{-p^2 X_1 - p^4 X_2 - p^6 X_3}$$

Analytically this is trivial

$$\int d\theta \ e^{i\theta} \langle \delta(\theta - \theta') \rangle = e^{-X_1 - X_2 - X_3}$$

But if we only capture the Gaussian (ie. X_1) we make a 20% error

Conclusion: The effect of X_2 is 1/V suppressed in $\langle \delta(\theta - \theta') \rangle$. But is nevertheless needed to get the correct free energy.

The sign problem as a total derivative

The distribution of n_B with θ

$$\langle \mathbf{n}_{B} \delta(\theta - \theta') \rangle_{1+1}$$

$$\equiv \frac{1}{Z_{1+1}} \lim_{\tilde{\mu} \to \mu} \frac{d}{d\tilde{\mu}} \int dA \, \delta(\theta - \theta'(\mu)) \det^{2}(D + \tilde{\mu}\gamma_{0} + m) e^{-S_{YM}}$$

The distribution of n_B with θ

$$\langle \mathbf{n}_{B} \delta(\theta - \theta') \rangle_{1+1}$$

$$\equiv \frac{1}{Z_{1+1}} \lim_{\tilde{\mu} \to \mu} \frac{d}{d\tilde{\mu}} \int dA \, \delta(\theta - \theta'(\mu)) \det^{2}(D + \tilde{\mu}\gamma_{0} + m) e^{-S_{YM}}$$

We are after

$$\langle \mathbf{n}_{\mathbf{B}} \rangle_{1+1} = \int d\theta \, \langle \mathbf{n}_{\mathbf{B}} \delta(\theta - \theta') \rangle_{1+1}$$

Sign problem as total derivative - p. 25/37

The sign problem as total derivatives

$$\langle \mathbf{n}_{B}\delta(\theta - \theta') \rangle_{N_{f}} = \left(c_{0} + \frac{c_{1}}{-i} \frac{\partial}{\partial \theta} + \frac{c_{2}}{(-i)^{2}} \frac{\partial^{2}}{\partial \theta^{2}} + \ldots \right) \langle \delta(\theta - \theta') \rangle_{N_{f}}$$

The sign problem as total derivatives

$$\langle \mathbf{n}_{B} \delta(\theta - \theta') \rangle_{N_{f}} = \left(c_{0} + \frac{c_{1}}{-i} \frac{\partial}{\partial \theta} + \frac{c_{2}}{(-i)^{2}} \frac{\partial^{2}}{\partial \theta^{2}} + \dots \right) \langle \delta(\theta - \theta') \rangle_{N_{f}}$$
Signal Noise

$$\langle \mathbf{n}_{\mathbf{B}} \rangle_{1+1} = \int d\theta \ \langle \mathbf{n}_{\mathbf{B}} \delta(\theta - \theta') \rangle_{1+1} = c_0$$

Example

In 1-loop chiral perturbation theory only $c_1 \neq 0$

$$\langle n_B \rangle_{N_f} = \int d\theta \left(\frac{c_1}{-i} \frac{\partial}{\partial \theta} \right) \langle \delta(\theta - \theta') \rangle_{N_f} = 0$$

Only Noise

Conclusions

Interplay between lattice and analytic QCD is essential to understand QCD at $\mu \neq 0$

Conclusions

Interplay between lattice and analytic QCD is essential to understand QCD at $\mu \neq 0$

Here:

Fixed θ

Non-Gaussian terms even for $\mu < m_{\pi}/2$

Sign problem as total derivative

Additional slides

The distribution of n_B with θ

$$\langle \mathbf{n}_{B} \delta(\theta - \theta') \rangle_{1+1}$$

$$\equiv \frac{1}{Z_{1+1}} \lim_{\tilde{\mu} \to \mu} \frac{d}{d\tilde{\mu}} \int dA \, \delta(\theta - \theta'(\mu)) \det^{2}(D + \tilde{\mu}\gamma_{0} + m) e^{-S_{YM}}$$

The distribution of n_B with θ

$$\langle n_B \delta(\theta - \theta') \rangle_{1+1} \equiv \frac{1}{Z_{1+1}} \lim_{\tilde{\mu} \to \mu} \frac{d}{d\tilde{\mu}} \int dA \, \delta(\theta - \theta'(\mu)) \det^2(D + \tilde{\mu}\gamma_0 + m) e^{-S_{YM}}$$
Recall
$$\delta(\theta - \theta'(\mu)) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dp \, e^{-ip\theta} \frac{\det^{p/2}(D + \mu\gamma_0 + m)}{\det^{p/2}(D - \mu\gamma_0 + m)}$$

The general form of

$$\frac{1}{Z_{N_f}} \left\langle \frac{\det^{p/2}(D + \mu\gamma_0 + m)}{\det^{p/2}(D - \mu\gamma_0 + m)} \det^{N_f}(D + \tilde{\mu}\gamma_0 + m) \right\rangle = \exp[\text{polynomial in } p]$$

where

$$\lim_{\tilde{\mu}\to\mu} e^{\text{polynomial in } p} = e^{-p/2(N_f + p/2)X_1 - (p/2(N_f + p/2))^2 X_2 + \dots}$$

The general form of

$$\frac{1}{Z_{N_f}} \left\langle \frac{\det^{p/2}(D + \mu\gamma_0 + m)}{\det^{p/2}(D - \mu\gamma_0 + m)} \det^{N_f}(D + \tilde{\mu}\gamma_0 + m) \right\rangle = \exp[\text{polynomial in } p]$$

where

$$\lim_{\tilde{\mu}\to\mu} e^{\text{polynomial in }p} = e^{-p/2(N_f + p/2)X_1 - (p/2(N_f + p/2))^2X_2 + \dots}$$

$$\langle n_B \delta(\theta - \theta') \rangle_{N_f} = \int \frac{dp}{2\pi} e^{-ip\theta} (c_0 + c_1 p + c_2 p^2 + \dots) e^{-p/2(N_f + p/2)X_1 - \dots}$$

The general form of

$$\frac{1}{Z_{N_f}} \left\langle \frac{\det^{p/2}(D + \mu\gamma_0 + m)}{\det^{p/2}(D - \mu\gamma_0 + m)} \det^{N_f}(D + \tilde{\mu}\gamma_0 + m) \right\rangle = \exp[\text{polynomial in } p]$$

where

$$\lim_{\tilde{\mu}\to\mu} e^{\text{polynomial in }p} = e^{-p/2(N_f + p/2)X_1 - (p/2(N_f + p/2))^2X_2 + \dots}$$

$$\langle n_B \delta(\theta - \theta') \rangle_{N_f} = \int \frac{dp}{2\pi} e^{-ip\theta} (c_0 + c_1 p + c_2 p^2 + \dots) e^{-p/2(N_f + p/2)X_1 - \dots}$$

... looks pretty complicated ... but in fact ...

Total derivatives

We found

$$\langle n_B \delta(\theta - \theta') \rangle_{N_f} = \int \frac{dp}{2\pi} e^{-ip\theta} (c_0 + c_1 p + c_2 p^2 + \dots) e^{-p/2(N_f + p/2)X_1 - \dots}$$

Total derivatives

We found

$$\langle n_B \delta(\theta - \theta') \rangle_{N_f} = \int \frac{dp}{2\pi} e^{-ip\theta} (c_0 + c_1 p + c_2 p^2 + \dots) e^{-p/2(N_f + p/2)X_1 - \dots}$$

But this is simply

$$\langle n_B \delta(\theta - \theta') \rangle_{N_f}$$

$$= \int_{-\infty}^{\infty} \frac{\mathrm{d}p}{2\pi} \left(c_0 + \frac{c_1}{-i} \frac{\partial}{\partial \theta} + \frac{c_2}{(-i)^2} \frac{\partial^2}{\partial \theta^2} + \dots \right) e^{-ip\theta} e^{-p/2(N_f + p/2)X_1 + \dots}$$

$$= \left(c_0 + \frac{c_1}{-i} \frac{\partial}{\partial \theta} + \frac{c_2}{(-i)^2} \frac{\partial^2}{\partial \theta^2} + \dots \right) \langle \delta(\theta - \theta') \rangle_{N_f}$$

Total derivatives

We found

$$\langle n_B \delta(\theta - \theta') \rangle_{N_f} = \int \frac{dp}{2\pi} e^{-ip\theta} (c_0 + c_1 p + c_2 p^2 + \dots) e^{-p/2(N_f + p/2)X_1 - \dots}$$

But this is simply

$$\langle n_B \delta(\theta - \theta') \rangle_{N_f}$$

$$= \int_{-\infty}^{\infty} \frac{\mathrm{d}p}{2\pi} \left(c_0 + \frac{c_1}{-i} \frac{\partial}{\partial \theta} + \frac{c_2}{(-i)^2} \frac{\partial^2}{\partial \theta^2} + \dots \right) e^{-ip\theta} e^{-p/2(N_f + p/2)X_1 + \dots}$$

$$= \left(c_0 + \frac{c_1}{-i} \frac{\partial}{\partial \theta} + \frac{c_2}{(-i)^2} \frac{\partial^2}{\partial \theta^2} + \dots \right) \langle \delta(\theta - \theta') \rangle_{N_f}$$
Signal Noise

Total derivatives and volume

In 1-loop chiral perturbation theory

$$\langle n_B \delta(\theta - \theta') \rangle_{1+1}$$

$$= [\lim_{\tilde{\mu} \to \mu} \frac{d}{d\tilde{\mu}} V \Delta G_0(-\mu, \tilde{\mu})] \frac{e^{V \Delta G_0}}{\sqrt{\pi V \Delta G_0}} (1 + i \frac{\theta}{V \Delta G_0}) e^{2i\theta} e^{-\theta^2/V \Delta G_0}$$

$$\langle e^{2ip\theta'} \rangle_{N_f} = e^{-(|p+N_f/2|-N_f/2)V\Delta\Omega}$$

$\Delta \Omega$ is the difference between the mean field terms

$\Delta \Omega$ is the difference between the mean field terms

$$\Delta \Omega = 2\mu^2 F^2 + \frac{\Sigma^2 m^2}{2\mu^2 F^2} - 4m\Sigma$$

Lombardo Splittorff Verbaarschot PRD 80 (2009) 054509

The θ -distribution ($\mu > m_{\pi}/2$)

$$\langle \delta(2\theta - 2\theta') \rangle = \frac{1}{\pi} \sum_{p=-\infty}^{\infty} e^{-2ip\theta} \langle e^{2ip\theta'} \rangle_{N_f}$$

The θ -distribution ($\mu > m_{\pi}/2$)

$$\langle \delta(2\theta - 2\theta') \rangle = \frac{1}{\pi} \sum_{p=-\infty}^{\infty} e^{-2ip\theta} \langle e^{2ip\theta'} \rangle_{N_f}$$

Lorentzian (on $[-\pi/2:\pi/2]$)

$$\langle \delta(2\theta - 2\theta') \rangle_{1+1} = e^{2i\theta} \frac{e^{V\Delta\Omega}}{2\pi} \frac{\sinh(V\Delta\Omega)}{\cosh(V\Delta\Omega) - \cos(2\theta)}$$

The θ -distribution ($\mu > m_{\pi}/2$)

$$\langle \delta(2\theta - 2\theta') \rangle = \frac{1}{\pi} \sum_{p=-\infty}^{\infty} e^{-2ip\theta} \langle e^{2ip\theta'} \rangle_{N_f}$$

Lorentzian (on $[-\pi/2:\pi/2]$)

$$\langle \delta(2\theta - 2\theta') \rangle_{1+1} = e^{2i\theta} \frac{e^{V\Delta\Omega}}{2\pi} \frac{\sinh(V\Delta\Omega)}{\cosh(V\Delta\Omega) - \cos(2\theta)}$$

Central limit theorem fails!

Lorentzian folded onto $[-\pi/2:\pi/2]$

Multiply by $e^{2i\theta}$ to get $\langle \delta(2\theta - 2\theta') \rangle_{1+1}$

Gaussian folded onto $[-\pi:\pi]$

Multiply by $e^{2i\theta}$ to get $\langle \delta(\theta - \theta') \rangle_{1+1}$