The strange degrees of freedom in QCD at high temperature

Christian Schmidt

Universität Bielefeld

Abstract

We use up to fourth order cumulants of net strangeness fluctuations and their correlations with net baryon number fluctuations to extract information

- on the strange meson and baryon contribution to the low temperature hadron resonance gas,
- on the dissolution of strange hadronic states in the crossover region of the QCD transition,
- on the quasi-particle nature of strange quark contributions to the high temperature quark-gluon plasma phase.

 $T \lesssim T_c$ $T_c \lesssim T_c \lesssim 2T_c$

 $T\gtrsim 2T_c$

 $T_c :=$ chiral crossover temperature

Outline

1) Introduction

- Definitions of cumulants and correlations
- Motivations to study fluctuations of conserved charges

2) The lattice setup and results

- The HISQ action
- 4th order fluctuations and correlations

3) A closer look to strangeness

- Strangeness in the HRG model
- Disentangling different strangeness sectors

4) Summary

based on BNL-BI: arXiv:1304.7220

BNL-Bielefeld Collaboration:

- A. Bazavov, H.-T. Ding, P. Hegde, O. Kaczmarek, F. Karsch, E. Laermann,
- S. Mukherjee, P. Petreczky, C. Schmidt, D. Smith, W. Soeldner, M. Wagner

Generalized Susceptibilites / Cumulants

Expansion of the pressure:

$$\frac{p}{T^{4}} = \sum_{i,j,k=0}^{\infty} \frac{1}{i!j!k!} \chi_{ijk,0}^{BQS} \left(\frac{\mu_{B}}{T}\right)^{i} \left(\frac{\mu_{Q}}{T}\right)^{j} \left(\frac{\mu_{S}}{T}\right)^{k}$$

$$X = B, Q, S: \text{ conserved charges}$$

$$K = B, Q, S: \text{ conserved charges}$$

only at freeze-out $(\mu_f(\sqrt{s}), T_f(\sqrt{s}))!$

ratios of cumulants are volume independent!

Christian Schmidt

Motivations

1) Discover a critical point (if exists)

- Analyze Taylor series/Pade resummations of various susceptiblities: find region of large fluctuations
- Analyze the radius of convergence directly

2) Analyze freeze-out conditions

 Match various cumulant ratios of measured electric charge fluctuations to (lattice) QCD results: determine freeze-out parameters.

 \rightarrow see talk by M. Wagner

3) Identify the relevant degrees of freedom (this talk)

• Compare (lattice) QCD fluctuations to various hadronic/quasiparticle models:

Does deconfinement take place above the chiral crossover temperature?

T [MeV] critica end-point quark-gluon-plasma 154(9) hadron gas nuclear matter vacuum neutron star chemical potential μ_B

Expected phase diagram of QCD:

Christian Schmidt

Does deconfinement take place above the chiral crossover temperature?

The chiral crossover line:

Christian Schmidt

 $T_c = 154(9)~{
m MeV}$ HotQCD, PRD 85 (2012) 054503

 $T_c(\mu_B) = T_c(0) \left[1 - 0.0066(7) \mu_B^2
ight]$ BNL-BI, PRD 83 (2011) 014504

 \Rightarrow apparent discrepancies among the freeze-out points that need to be resolved

The Lattice Setup

Action: highly improved staggered quarks (HISQ) Lattice size: $24^3 \times 6$, $32^3 \times 8$, $48^3 \times 12$ Mass: $m_q = m_s/20 \rightarrow m_\pi \approx 160$ MeV Statistics: $O(10^3) - O(10^4)$

Observables: traces of combinations of *M* and $M' = \partial M / \partial \mu$

$$\begin{split} \frac{\partial \ln Z}{\partial \mu} &= \frac{1}{Z} \int \mathcal{D}U \operatorname{Tr} \left[M^{-1}M' \right] \ e^{\operatorname{Tr} \ln M} e^{-\beta S_G} \\ &= \left\langle \operatorname{Tr} \left[M^{-1}M' \right] \right\rangle \\ \frac{\partial^2 \ln Z}{\partial \mu^2} &= \left\langle \operatorname{Tr} \left[M^{-1}M'' \right] \right\rangle - \left\langle \operatorname{Tr} \left[M^{-1}M'M^{-1} \right] \right\rangle + \left\langle \operatorname{Tr} \left[M^{-1}M' \right]^2 \right\rangle \end{split}$$

Method: stochastic estimators with N = 1500 random vectors

$$\operatorname{Tr}[Q] \approx \frac{1}{N} \sum_{i=1}^{N} \eta_i^{\dagger} Q \eta_i \quad \text{ with } \quad \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \eta_{i,x}^{\dagger} \eta_{i,y} = \delta_{x,y}$$

Christian Schmidt

Generalized Susceptibilites / Cumulants

 \Rightarrow structure consistent with O(4) critical behavior at $\mu_B = 0, \ m = 0$

BS Correlations

2nd order

4th order

Christian Schmidt

Strangeness within the HRG

HRG:

Christian Schmidt

XQCD 2013

Strangeness within the HRG

The pressure obtains contributions from different hadronic sectors: p^{HRG}

$$\overline{T^4} = \begin{cases} f_{(0,0)}(T) + f_{(0,1)}(T) \cosh(-\hat{\mu}_S) \\ + f_{(1,0)} \cosh(\hat{\mu}_B) + f_{(1,1)}(T) \cosh(\hat{\mu}_B - \mu_S) \\ + f_{(1,2)}(T) \cosh(\hat{\mu}_B - 2\hat{\mu}_S) + f_{(1,3)}(T) \cosh(\hat{\mu}_B - 3\hat{\mu}_S) \end{cases} \end{cases}$$
 mesons have a mean of the formula of the form

 \Rightarrow for diagonal fluctuations: $\chi_n^B \equiv \chi_{n+2}^B$, whereas $\chi_n^S \not\equiv \chi_{n+2}^S$ (multi-strange hadrons) \Rightarrow for correlations: $\chi_{n,m}^{BS} \not\equiv \chi_{n+2,m}^{BS}$

Christian Schmidt

The pressure obtains contributions from **4 different strangeness** sectors: n^{HRG}

$$\frac{F}{T^4} = f_{(0,0)}(T) + f_{(0,1)}(T) \cosh(-\hat{\mu}_S) \\ + f_{(1,0)} \cosh(\hat{\mu}_B) + f_{(1,1)}(T) \cosh(\hat{\mu}_B - \mu_S) \\ + f_{(1,2)}(T) \cosh(\hat{\mu}_B - 2\hat{\mu}_S) + f_{(1,3)}(T) \cosh(\hat{\mu}_B - 3\hat{\mu}_S) \\ \end{array} \right\} \ baryons$$

$$\implies \left(\frac{p^{HRG}}{T^4}\right)_{S\neq 0} = M_1 + B_1 + B_2 + B_3$$

 \Rightarrow diagonal fluctuations and correlations are given as linear combinations of the different strangeness sectors

$$\begin{split} \chi^S_2 &= (-1)^2 M_1 + (-1)^2 B_1 + (-2)^2 B_2 + (-3)^2 B_3 \\ \chi^S_4 &= (-1)^4 M_1 + (-1)^4 B_1 + (-2)^4 B_2 + (-3)^4 B_3 \\ \chi^{BS}_{11} &= (-1) B_1 + (-2) B_2 + (-3) B_3 \\ \chi^{BS}_{22} &= (-1)^2 B_1 + (-2)^2 B_2 + (-3)^2 B_3 \\ \vdots \end{split}$$

invert this relation!

Christian Schmidt

Idea: separate strangeness sectors by making use of all diagonal strangeness fluctuations and baryon-strangeness correlations up to the 4th order

$$egin{aligned} &x_1\chi_{11}^{BS}+x_2\chi_{31}^{BS}+x_3\chi_2^S+x_4\chi_{22}^{BS}+x_5\chi_{13}^{BS}+x_6\chi_4^S\ &=y_1M_1+y_2B_1+y_3B_2+y_4B_3 \end{aligned}$$

solve:
$$A\vec{x} = \hat{e}_i$$
 with

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 1 \\ -1 & -1 & 1 & 1 & -1 & 1 \\ -2 & -2 & 4 & 4 & -8 & 16 \\ -3 & -3 & 9 & 9 & -27 & 81 \end{pmatrix}$$
defined by powers of strangeness charges

$$\Rightarrow \dim (\text{Kernel})=2, \text{ spanned by } v_1, v_2$$

$$v_1 = \chi_{31}^{BS} - \chi_{11}^{BS}$$

$$v_2 = \frac{1}{3}(\chi_2^S - \chi_4^S) - 2\chi_{13}^{BS} - 4\chi_{22}^{BS} - 2\chi_{31}^{BS}$$

must vanish if HRG is a valid description!

Christian Schmidt

- strange baryons carry baryon number 1
- partial pressure from strange particles is hadronic

• all baryons carry baryon number 1

indicator for the validity of the HRG

- at $\,T \lesssim 160~{
 m MeV}$ we find reasonable agreement with the HRG
- at $\,T \gtrsim 160~{
 m MeV}$ deviations from HRG become large

solving the 4 inhomogenous systems $Aec{x}=\hat{e}_{i}$

$$\Rightarrow \text{ the solutions are translations of the kernel}} M(c_1, c_2) = \chi_2^S - \chi_{22}^{BS} + c_1 v_1 + c_2 v_2 B_1(c_1, c_2) = \frac{1}{2} \left(\chi_4^S - \chi_2^S + 5\chi_{13}^{BS} + 7\chi_{22}^{BS} \right) + c_1 v_1 + c_2 v_2 B_2(c_1, c_2) = -\frac{1}{4} \left(\chi_4^S - \chi_2^S + 4\chi_{13}^{BS} + 4\chi_{22}^{BS} \right) + c_1 v_1 + c_2 v_2 B_3(c_1, c_2) = \frac{1}{18} \left(\chi_4^S - \chi_2^S + 3\chi_{13}^{BS} + 3\chi_{22}^{BS} \right) + c_1 v_1 + c_2 v_2$$

BNL-BI: arXiv:1304.7220

Christian Schmidt

- For $T \lesssim 155$ MeV different strange sectors agree **separately** with the HRG
- For higher temperatures the deviations from HRG set in abruptly and rapidly become large
 - modifications of the strange hadron contribution to bulk thermodynamics
 become apparent in the crossover region and follow the same pattern
 present also in the light quark sector.

Strangeness in the QGP

 We now probe the quasi-particle picture, i.e. to what extent the susceptibilities involving strangeness contributions can be understood in terms of elementary degrees of freedom that carry quantum numbers

$$S = \pm 1, B = \pm 1/3, Q = \pm 1/3$$

• for a free (uncorrelated) strange
quarks we have
$$B^2Q = -BQ^2$$

 $\Rightarrow \lim_{T \to \infty} \left(-\chi^{BQS}_{211}/\chi^{BQS}_{121}\right) = 1$

 for free (uncorrelated) strange hadrons we have contributions from two charge sectors.

$$\Rightarrow \left(-\chi^{BQS}_{211}/\chi^{BQS}_{121}\right) < 1$$

Christian Schmidt

Strangeness in the QGP

 We now probe the quasi-particle picture, i.e. to what extent the susceptibilities involving strangeness contributions can be understood in terms of elementary degrees of freedom that carry quantum numbers

$$S = \pm 1, B = \pm 1/3, Q = \pm 1/3$$

$$\left(\chi_{nm}^{BS}\right)_{T\to\infty} = (-1)^m \left(\frac{1}{3}\right)^n \frac{6}{\pi}$$

$$(n+m=4, m>0)$$

 \Rightarrow relevant degrees of freedom
are that of a weakly interact.
quark gas for $T \gtrsim 2T_c$

Christian Schmidt

- We have provided evidence that in QCD the strange hadron sector gets modified strongly in the vicinity of the pseudo-critical temperature determined from the light quark chiral susceptibilities.
- Deviations from the HRG model start becoming large in the transition region and follow a pattern similar to that known for the light quark sector.
- There thus is no evidence that deconfinement and the dissolution of hadronic bound states may be shifted to higher temperatures for strange hadrons.
- We also showed that at temperatures larger than T>2T_c a simple quasi-particle model may be sufficient to describe properties of mixed strangeness-baryon number susceptibilities.
- Closer to T_c the structure of these susceptibilities becomes more complicated. A feature well-known also from bulk thermodynamic quantities like the pressure.