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Standard Model at low energies

Low energies (E ≪MW): weak interaction is frozen
only generates tiny effects, visible in the finite lifetime of the particles, e.g.

⇒ Standard Model reduces to QCD + QED

Precision theory for cold matter (T ≪MW)
size and structure of atoms, solids, etc.

QED is infrared stable
⇒ at low energies, electromagnetic interaction can be treated as a perturbation

Parameters in Lagrangian: g, θ, e, mu, md, ms, mc, mb, mt, me, mµ, mτ

Bohr radius: a =
4π

e2 me

Pattern of quark and lepton masses looks bizarre . . .

This talk: mu,md
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Symmetries

Symmetry plays an essential role in our understanding of nature at low energies

QCD with Nf massless quarks: Hamiltonian has an exact chiral symmetry,
SU(Nf )L×SU(Nf )R

Unless Nf is taken too large, |0〉 is symmetric only under the subgroup SU(Nf )L+R

Symmetry is hidden, "spontaneously broken"

⇒ Spectrum contains N2
f −1 Goldstone bosons

mu, md, ms happen to be small

⇒ SU(3)L×SU(3)R is an approximate symmetry of QCD

broken spontaneously: |0〉 not invariant

broken explicitly: LQCD not invariant

Symmetry broken by mass term muuu + md dd + msss,
but since mu,md,ms are small, the breaking is weak
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Light quark masses as perturbations

Masses of the light quarks enter the Hamiltonian via

HQCD = H0 + H1

H1 =

∫

d3x {muuu + md dd + msss}

H0 describes u, d, s as massless, c, b, t as massive

H0 is invariant under SU(3)L×SU(3)R

Expansion in
powers of

mu,md,ms

⇐⇒
Perturbation series
in powers of H1

H0 treats π,K, η as massless particles

H1 gives them a mass
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Gell-Mann-Oakes-Renner formula

First order perturbation theory yields:

M2
π = (mu + md) × |〈0|uu |0〉| × 1

F 2
π⇑ ⇑

explicit spontaneous
Gell-Mann, Oakes & Renner 1968

Coefficient: decay constant Fπ

〈0| dγµγ5u|π+〉 = i pµ
√

2Fπ

Value of Fπ is known from π+ → µ+ν

⇒ The main low energy properties of QCD can be understood on the basis of this formula
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Lattice results for Mπ

GMOR formula is beautifully confirmed on the lattice:

determine Mπ as a function of mu = md = m
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physics ⇒

Lüscher, Lattice conference 2005 ETM collaboration, hep-lat/0701012

Proportionality of M2
π to m holds out to m ≃ 10× physical value of mud
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Pattern of lowest levels

M2
π = (mu + md)B + O(m2)

⇒ The energy gap of QCD is small because mu,md happen to be small

M2
K+ = (mu + ms)B + O(m2)

M2
K0 = (md + ms)B + O(m2)

⇒ M2
K is much larger than M2

π , because ms happens to be large compared to
mu,md

Goldstone boson masses measure the strength of symmetry breaking
⇒ strongly violate SU(3)

Check: first order perturbation theory also yields
M2

η = 1
3
(mu + md + 4ms)B + O(m2)

⇒ M2
π − 4M2

K + 3M2
η = O(m2)

Gell-Mann-Okubo formula for M2
√
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Interface between the lattice approach and χPT

The χPT formulae for the expansion of many quantities of physical interest in powers
of mu, md, ms have been worked out to NNLO, not only masses and decay
constants, also form factors, η → 3π, . . . . . . . . . . . .

ms is not very small, terms of order m2
s yield sizable corrections.

1. Pion physics: expansion in powers of mu,md works very well.

2. SU(3) is a decent approximate symmetry: symmetry breaking parameter
ms − mud must be small, meaningful to expand in powers of ms − mud.

The two properties can be understood if the expansion in powers of
mu,md,ms makes sense at the physical values of the quark masses.

I do not know of an alternative explanation.

Need to understand why some of the collaborations find that the χPT formulae do not
describe their data on the quark mass dependence of Mπ,MK , Fπ, FK well.

The constants relevant at NNLO are still poorly known. Often, theoretical estimates are
used, obtained by saturating sum rules with resonance contributions. Those constants
that govern the dependence on the quark masses, however, represent integrals over
scalar spectral functions. Scalar meson dominance does not work!

⇒ Theoretical estimates can at best indicate the order of magnitude.

The lattice approach is the ideal method for the determination of the LECs !
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Zweig rule

Of particular interest: understanding the Zweig (Okubo-Zweig-Iizuka) rule.

{F,B,Σ} =

{

Fπ,
M2

π

mu + md

, |〈0|uu |0〉|
}

mu,md→0

If the Zweig rule was exact, these quantities would be independent of ms.

Low energy theorem (exact, for any value of ms): Σ = F 2B.

Can determine the Zweig rule violations without reference to χPT:
compare values at ms = physical and at ms = 0: F/F0, B/B0,Σ/Σ0.

At NLO in the expansion in powers of ms, the violations of the Zweig rule are
described by the LECs L4, L6 (in the large Nc limit, these constants vanish).

Only two papers without red tags in FLAG review: MILC (2009), HPQCD (2013).
Inserting the values quoted for L4, L6 in the NLO formulae of χPT, I get

F/F0 B/B0 Σ/Σ0

MILC (2009) 1.12(4) 1.10(7) 1.34(13)

HPQCD (2013) 1.10(8) 1.12(8) 1.32(28)

GL (1985) 1.0(1) 1.0(2) 1.0(3)

⇒ Evidence for small Zweig rule violations, consistent with the crude old estimates.
Paramagnetic inequalities of Descotes-Genon, Girlanda & Stern are confirmed.
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Zweig rule

first order in ms F/F0 B/B0 Σ/Σ0

MILC (2009) 1.12(4) 1.10(7) 1.34(13)

HPQCD (2013) 1.10(8) 1.12(8) 1.32(28)

GL (1985) 1.0(1) 1.0(2) 1.0(3)

The Zweig rule violations roughly amount to a common change in scale:

F ≃ ZF0, B ≃ ZB0 ⇒ Σ ≃ Z3Σ0 with Z ≃ 1.10(5)

MILC has evaluated the ratios to all orders in ms:

all orders F/F0 B/B0 Σ/Σ0

MILC (2009) 1.10(4) 1.20(7) 1.48(16)

For F/F0, the corrections are small, but for B/B0, the central values of the terms of
order ms and m2

s (or higher) are of the same size . . .
The Zweig rule deserves more attention !

HPQCD instead evaluated the quark condensates at the physical quark masses:

〈0|ss |0〉
〈0|uu |0〉 = 1.08(16)(1)

Confirms that SU(3) is a decent approximate symmetry: the symmetry breaking
generated by ms − mud is too small to stick out from the noise of the calculation.
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Isospin breaking

The symmetry properties of the vacuum shield the pions from isospin breaking.

The difference between mu and md only generates a tiny effect of order
M2

π+ − M2
π0 ∝ (mu − md)

2.

The mass difference between π0 and π+ is due almost exclusively to
electromagnetism.

⇒ More easy to determine the mean mass mud ≡ 1
2
(mu + md)

than the difference mu − md.

Estimate the e.m. self-energies with the Dashen theorem:

M2
K+

e.m.
= M2

π+
e.m

M2
π0

e.m.
= M2

K0
e.m.
= 0
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Quark mass ratios

Solve the tree level mass formulae for the ratios ms/mud and mu/md:

ms

mud

=
M2

K+ + M2
K0 − M2

π+

M2
π0

= 25.9

Weinberg 1977
mu

md

=
M2

K+ − M2
K0 + 2M2

π0 − M2
π+

M2
K0 − M2

K+ + M2
π+

= 0.56

Low energy theorems, valid to leading order of the chiral expansion.
Corrections from higher orders ? Could they strongly modify the numerical result ?

What is the uncertainty to be attached to these predictions ?
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Lattice

Lattice results for
ms

mud

:
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Weinberg 77
Leutwyler 96
Kaiser 98
Narison 06
Oller 07
PDG 12

QCDSF/UKQCD 06
ETM 07
RBC 07
ETM 10B

FLAG �� =
 estimate

MILC 04, HPQCD/MILC/UKQCD 04
RBC/UKQCD 08
PACS-CS 08
MILC 09
MILC 09A
PACS-CS 09
Blum 10
RBC/UKQCD 10A
BMW 10A
LVdW 11
PACS-CS 12
RBC/UKQCD 12

FLAG �� =
+	 estimate

�� /���
PRELIMINARY

preliminary lattice average
quoted by FLAG:

ms

mud
= 27.5 ± 0.4

accuracy reached: 1.5 %

27.5 = 25.9 + 1.6
⇑

higher orders

⇒ correction is small, leading term of chiral perturbation series dominates
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Lattice
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Most lattice calculations are done in pure QCD.

For ms/mud, this is a good approxiation, because the uncertainties in the violations
of the Dashen theorem do not strongly affect this ratio.

For mu/md, the situation is different. Lattice simulations of QCD + QED cannot be
done with the same level of confidence as for QCD alone: not all systematic errors are
under control (quenched photons, finite size effects for interactions of long range).
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Low energy theorem valid to NLO

The lattice result for ms/mud determines the size of the correction in the relation

M2
K

M2
π

=
ms + mud

mu + md

{

1 + ∆M

}

ms/mud = 27.5 ± 0.4 ⇒ ∆M = −0.057 ± 0.013.

Remarkably, chiral symmetry implies that the correction of NLO in the ratio of mass
splittings is the same:

M2
K0 − M2

K+

M2
K − M2

π

=
md − mu

ms − mud

{

1 + ∆M + O(M2)
}

Hence the quark mass ratio

Q2 ≡ m2
s − m2

ud

m2
d − m2

u

is given by a ratio of meson masses, up to corrections of NNLO:

Q2 =
M2

K − M2
π

M2
K0 − M2

K+

· M2
K

M2
π

{

1 + O(M2)
}

Gasser & L. 1985
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Consequences of the low energy theorem for Q

Insert Weinberg’s leading order ratios ⇒ Q = 24.3.

Q2 is a ratio of quark mass squares
⇒ a given value of Q imposes a homogeneous quadratic constraint on mu,md,ms

⇒ represents an ellipse in the plane of the quark mass ratios:
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Q = 24.3
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Consequences of the low energy theorem for Q

Insert Weinberg’s leading order ratios ⇒ Q = 24.3.

Q2 is a ratio of squares of quark masses
⇒ a given value of Q imposes a homogeneous quadratic constraint on mu,md,ms

⇒ represents an ellipse in the plane of the quark mass ratios:
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Q = 24.3Intersection

Critical input here is the "Dashen theorem": Weinberg’s estimates for the quark mass
ratios account for QED only to LO.
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η → 3π

The decay η → 3π provides a better handle on Q than the mass splitting between
K+ and K0, because the e.m. interaction is suppressed (Sutherland’s theorem).

For e = 0 and mu = md, isospin is conserved, hence G-parity is conserved.
In this limit, the η is a stable particle: Gη = 1, Gπ = −1.

⇒ Since the e.m. contributions are tiny, the transition amplitude is to a very good
approximation proportional to (mu − md).

Parameter free prediction for the leading term of the chiral perturbation series:

A(η → π+π−π0) = −
√

3

4
· md − mu

ms − mud

·
s − 4

3
M2

π

F 2
π

Compare leading term in the chiral expansion of the ππ scattering amplitude:

A(ππ → ππ) =
s − M2

π

F 2
π

In both cases, the leading term is linear in s and contains an Adler zero

sA = M2
π for ππ scattering sA = 4

3
M2

π for η decay

The analytic structure of the two amplitudes is very similar.

In both cases, the higher order contributions of the chiral perturbation series are
dominated by the final state interaction among the pions.
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One loop

Most remarkable property of the one loop representation: expressed in terms of Fπ ,
Mπ , MK , Mη , Q, all LECs except L3 drop out. Gasser & L. 1985

A(η → π+π−π0) = − 1

Q2
· M2

K(M2
K − M2

π)

3
√

3M2
πF

2
π

· M(s, t, u)

Moreover, L3 concerns the momentum dependence of the amplitude, can be
determined quite well from ππ scattering.

⇒ At one loop, the result for the rate is of the form

Γη→π+π−π0 =
C

Q4
Q2 ≡ m2

s − m2
ud

m2
d − m2

u

where C is a known constant ⇒ Q can be determined from the observed rate.

The main problem is not the uncertainty in L3, but the contributions from higher
orders. In 1985, we estimated the uncertainty in the result for Q at

1

Q2
= (1.9 ± 0.3) · 10−3 ↔ Q = 22.9

+2.1
−1.6 Gasser & L. 1985

The result is consistent with the value Q = 24.3 obtained from the kaon mass
difference with the Dashen theorem, but the uncertainties are large.
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Dispersion theory

The structure of the decay amplitude is governed by the final state interaction.
Standard method for the analysis of this interaction: dispersion theory.

Up to and including NNLO, the amplitude can be represented in terms of 3 functions of
a single variable: Fuchs, Sazdjian and Stern 1993

M(s, t, u) = M0(s)+(s−u)M1(t)+(s−t)M1(u)+M2(t)+M2(u)−2
3
M2(s)

(discontinuities from partial waves with ℓ ≥ 2 start contributing only at N3LO).

The dispersion relations obeyed by the three functions can be brought to the form

MI(s) = ΩI(s)

{

PI(s) +
sn

π

∫ ∞

4M2
π

ds′
sin δI(s

′)M̂I(s
′)

|ΩI(s′)|s′n(s′ − s)

}

I = 0, 1, 2

where δ0(s), δ1(s), δ2(s) are the S- and P-wave phase shifts of ππ scattering and

ΩI(s) ≡ exp

{

s

π

∫ ∞

4M2
π

ds′
δI(s

′)

s′(s′ − s)

}

is the corresponding Omnès factor.

Anisovich & L. 1996
The polynomials P0(s), P1(s), P2(s) collect the subtraction constants.

⇒ S- and P-wave phase shifts of ππ scattering are needed. If these are known,
dispersion theory fixes the amplitude up to the subtraction constants.
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Dispersive analysis of η decay

Main difference to ππ scattering: the subtraction constants relevant for η → 3π

cannot be predicted to the same precision.

Can analyze ππ scattering by treating only mu and md as small: SU(2)×SU(2)

In η decay, need to treat ms as an expansion parameter as well: SU(3)×SU(3)

Only the occurrence of an Adler zero follows from SU(2)×SU(2) symmetry alone.

The subtraction constants can be estimated by comparing the dispersive and chiral
representations at small values of s, t or u and requiring the occurrence of an Adler
zero at the proper place.

Anisovich & L. 1996

2 4 6 8

0 

1 

2 

Adler
zero

physical
region

ReM

s in units of Mπ

dispersive

LO

NLO
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Dispersive analysis of η decay

Anisovich & L. 1996

2 4 6 8

0 

1 

2 

Adler
zero

physical
region

ReM

s in units of Mπ

dispersive

LO

NLO

⇒ Final state interaction amplifies the transition.

Effect of the higher order contributions on the result for Q is modest:

Q = 22.4 ± 0.9 Kambor, Wiesendanger & Wyler 1996
Q = 22.7 ± 0.8 Anisovich & L. 1996

Confirms the one loop result, Q = 22.9
+2.1
−1.6, uncertainty reduced by a factor of 2.

KWW also investigated the transition η → 3π0, predicted the slope of the
corresponding Dalitz plot and showed that the result for the branching ratio
Γη→3π0/Γη→π+π−π0 is consistent with experiment.
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Recent work on η → 3π

In the meantime, the experimental situation improved a lot: KLOE, MAMI, WASA.

At low energies, the ππ phase shifts are now known to remarkable accuray:

Low energy precision experiments (E865, NA48, DIRAC).

Low energy theorems for scattering lengths.

Dispersion theory (Roy equations).

Simulations of QCD on a lattice now reach sufficiently small quark masses.
Powerful source of information, in particular also for the quark masses.

For η decay, χPT has been worked out to NNLO. Bijnens & Ghorbani 2007

At the precision reached, isospin breaking needs to be accounted for.
Ditsche, Kubis & Meissner 2009

Nonrelativistic effective theory. Gullström, Kupsc & Rusetsky 2009
Schneider, Kubis & Ditsche 2011

Improved dispersive analysis, comparison with experiment

Diploma work of Manuel Walker 1998, PhD thesis of Stefan Lanz 2011.
Thorough investigation in this framework is close to completion.

Colangelo, Lanz, L. & Passemar

Entirely different approach: Kampf, Knecht, Novotny & Zdrahal 2011
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Excursion: ππ scattering

The interaction among the pions plays a central role at low energies, particularly when
looking for physics beyond the Standard Model (precision).

Dispersion theory of the ππ scattering amplitude: Roy equations. Roy 1971

In the isospin limit, the Roy equations are exact.
Inelastic processes such as ππ → KK̄ → ππ are explicitly accounted for.

Dispersion relations involve two subtractions, integrals converge rapidly.
Subtraction constants can be identified with the S-wave scattering lengths, a0, a2.

⇒ If a0, a2 are known, the scattering amplitude can be calculated very accurately.

Ananthanarayan, Caprini, Colangelo, Gasser, L.
Descotes, Fuchs, Girlanda, Moussallam, Stern
García-Martín, Kamiński, Nebreda, Peláez, Ríos, Ruiz de Elvira, Ynduráin
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Scattering lengths

Prediction at leading order of χPT:

a0 =
7M2

π

32πF 2
π

= 0.16, a2 = − M2
π

16πF 2
π

= −0.045 Weinberg 1966

χPT allows to analyze the contributions of higher order. Chiral expansion has been
worked out to NNLO. Using dispersion theory, this leads to remarkably sharp
predictions for a0, a2, which triggered new low energy precision experiments:

π+π− atoms, DIRAC.

K± → π0π0π±, K0 → π0π0π0: cusp near threshold, NA48/2.

K± → π+π−e±ν data: E865, NA48/2.
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Experimental tests of the prediction
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Experimental tests of the prediction
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Uncertainty in χPT prediction for a0, a2 is dominated by the uncertainty in the
relevant coupling constants of the effective Lagrangian at NLO. These can now reliably
be determined on the lattice, from the quark mass dependence of Mπ and Fπ .

Direct determination of a2 via dependence of the energy levels on the size of the box.
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Compare the lattice results with prediction and experiment
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Compare the lattice results with prediction and experiment

0.16 0.18 0.2 0.22 0.24 0.26

-0.06 -0.06

-0.05 -0.05

-0.04 -0.04

-0.03 -0.03

universal band
tree, one loop, two loops
scalar radius 
CGL 2001

E865 Ke4 2010
NA48 Ke4 2010
NA48 K3π 2010
DIRAC 2011
Garcia-Martin et al. 2011

CERN-TOV 2006
JLQCD 2008
PACS-CS 2009
MILC 2010
ETM 2010
RBC/UKQCD 2011
NPLQCD 2011
Scholz et al. 2011 

NPLQCD 2008 
Feng et al. 2010
NPLQCD 2011
Yagi et al. 2011

a0

a2

0.2 0.21 0.22 0.23 0.24
-0.05

-0.045

-0.04

-0.035

a0

a2

Compared to this, η → 3π is yet an underdeveloped country.
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Back to η → 3π

Basic property of the dispersion relations: if the phase shifts are known, the amplitude
is uniquely determined by the subtraction constants.

If M(1)(s, t, u) and M(2)(s, t, u) are solutions, then λ1M(1) + λ2M(2) is also a
solution: the solutions form a linear space.

⇒ General solution is a linear superposition of basis functions. Number of independent
basis functions is determined by the number of subtractions made.

The subtraction constants are estimated with the following input:

1. Measured Dalitz plot distributions of the charged and neutral decay modes.
Andrzej Kupsc (KLOE), Sergey Prakhov (MAMI) and Patrik Adlarson (WASA)
kindly provided us with data tables.
In addition, we use the value for the slope of the Z-distribution of the neutral
decay mode quoted by the PDG: α = −0.0317(16).

2. The dispersive representation is matched with χPT at small values of s, t or u,
where the higher orders of the chiral perturbation series are smallest.
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Back to η → 3π

Basic property of the dispersion relations: if the phase shifts are known, the amplitude
is uniquely determined by the subtraction constants.

If M(1)(s, t, u) and M(2)(s, t, u) are solutions, then λ1M(1) + λ2M(2) is also a
solution: the solutions form a linear space.

⇒ General solution is a linear superposition of basis functions. Number of independent
basis functions is determined by the number of subtractions made.

The subtraction constants are estimated with the following input:

1. Measured Dalitz plot distributions of the charged and neutral decay modes.
Andrzej Kupsc (KLOE), Sergey Prakhov (MAMI) and Patrik Adlarson (WASA)
kindly provided us with data tables.
In addition, we use the value for the slope of the Z-distribution of the neutral
decay mode quoted by the PDG: α = −0.0317(16).

2. The dispersive representation is matched with χPT at small values of s, t or u,
where the higher orders of the chiral perturbation series are smallest.

The devil sits in the details also in this case . . .
We are still not through with the error analysis.
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To be done

The dependence of the result on the uncertainties in the input (phase shifts,
subtraction constants, experimental errors) can be worked out explicitly, but we yet
need to do this.

Concerning the input used for the phase shifts, the Roy equations provide a reliable
handle on the uncertainties – in their domain of validity:

√
s ≤ 1.15 GeV.

The dispersion integrals extend to ∞, but with the number of subtractions we are
using, the contributions from the region above KK̄ threshold are tiny.

We approximate the isospin breaking effects by means of χPT, using the NLO
representation of Ditsche, Kubis and Meissner.

The value of Q can be determined either from the rate of the transition
η → π+π−π0 or from η → 3π0. This offers a good test: evaluating the isospin
breaking effects in this way, we indeed find that the two results for Q agree.

I refrain from offering quantitative results for Q and for mu/md and draw only
qualitative conclusions. A detailed report on our work is forthcoming.

Light quark masses – p. 28



H. Leutwyler – Bern

Consequence for the quark mass ratios
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Intersection moves to values of mu/md and ms/md that are somewhat smaller
than those obtained with the LO mass formulae of Weinberg.
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Comparison with other work
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The preliminary results for the ratio mu/md are consistent with the lattice averages
quoted by FLAG, but tend to be somewhat smaller.
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