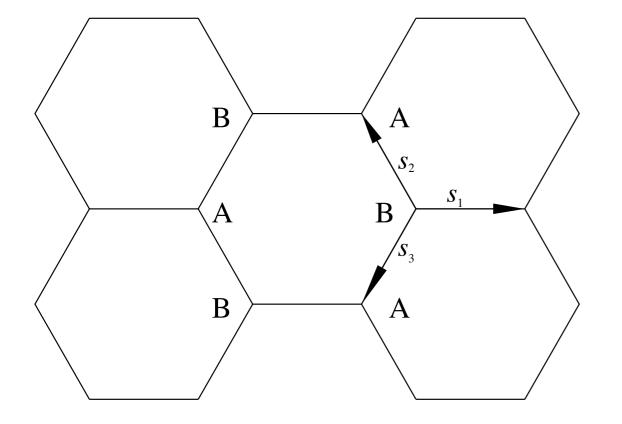

A strongly-interacting Fermi surface? Voltage-biased bilayer graphene

Simon Hands (Swansea U.)

with Wes Armour & Costas Strouthos, Phys. Rev. D87 (2013) 065010

XQCD Bern, 6th August 2013

Tuesday, 6 August 13


In this talk I will

- introduce a relativistic field theory for lowenergy electron excitations in graphene
- argue that at strong coupling there is a phase transition to a Mott insulator described by a quantum critical point (QCP)
- generalise to bilayer graphene with a non-zero inter-layer bias voltage (aka isopsin chemical potential).
- present simulation results probing degenerate matter in the presence of strong interactions

Relativity in Graphene

The electronic properties of graphene were first studied theoretically over 60 years ago

P.R. Wallace, Phys. Rev. **71** (1947) 622

$$H = -t \sum_{\mathbf{r}\in\mathbf{B}} \sum_{i=1}^{3} b^{\dagger}(\mathbf{r}) a(\mathbf{r} + \mathbf{s}_{i}) + a^{\dagger}(\mathbf{r} + \mathbf{s}_{i}) b(\mathbf{r})$$

"tight -binding" Hamiltonian

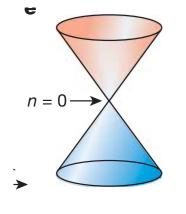
describes hopping of electrons in π-orbitals from A to B sublattices and vice versa

In momentum
$$H = \sum_{\vec{k}} \left(\Phi(\vec{k})a^{\dagger}(\vec{k})b(\vec{k}) + \Phi^{*}(\vec{k})b^{\dagger}(\vec{k})a(\vec{k}) \right)$$
space with
$$\Phi(\vec{k}) = -t \left[e^{ik_{x}l} + 2\cos\left(\frac{\sqrt{3}k_{y}l}{2}\right)e^{-i\frac{k_{x}l}{2}} \right]$$

Define states $|\vec{k}_{\pm}\rangle = (\sqrt{2})^{-1} [a^{\dagger}(\vec{k}) \pm b^{\dagger}(\vec{k})] |0\rangle$ $\Rightarrow \langle \vec{k}_{\pm} |H| \vec{k}_{\pm} \rangle = \pm (\Phi(\vec{k}) + \Phi^{*}(\vec{k})) \equiv \pm E(\vec{k})^{\epsilon_{/t}} \circ E^{-2}$ Energy spectrum is symmetric about E = 0

 $\epsilon/t = 0$

Half-filling (neutral or "undoped" graphene) has zero energy at "Dirac points" at corners of first Brillouin Zone:


There are two independent Dirac points in BZ1

$$\Phi(\vec{k}) = 0 \implies \vec{k} = \vec{K}_{\pm} = (0, \pm \frac{4\pi}{3\sqrt{3l}})$$

Taylor expand @ Dirac point

$$\Phi(\vec{K}_{\pm} + \vec{p}) = \pm v_F[p_y \mp ip_x] + O(p^2)$$

with "Fermi velocity"
$$v_F=rac{3}{2}tl$$

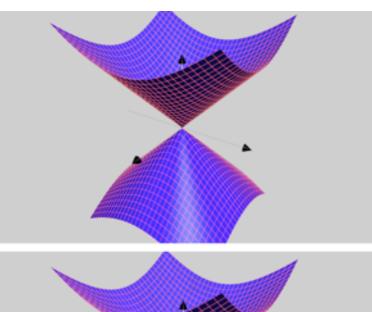
Define modified operators $a_{\pm}(\vec{p}) = a(\vec{K}_{\pm} + \vec{p})$

Now combine them into a "4-spinor" $\Psi = (b_+, a_+, a_-, b_-)^{tr}$

$$\Rightarrow H \simeq v_F \sum_{\vec{p}} \Psi^{\dagger}(\vec{p}) \begin{pmatrix} p_y + ip_x \\ p_y - ip_x \\ -p_y - ip_x \end{pmatrix} \Psi(\vec{p}) \begin{pmatrix} p_y - ip_x \\ -p_y - ip_x \end{pmatrix} \Psi(\vec{p})$$

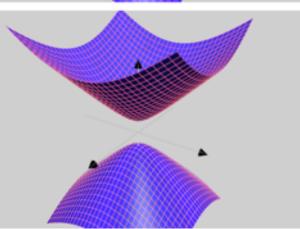
 $= v_F \sum_{\vec{p}} \Psi^{\dagger}(\vec{p}) \vec{\alpha}. \vec{p} \Psi(\vec{p}) \quad \begin{array}{l} \text{Dirac Hamiltonian} \\ \left\{\alpha_i, \alpha_j\right\} = 2\delta_{ij} \end{array}$

ie. low-energy excitations are relativistic massless fermions with velocity


 $v_F = \frac{3}{2}tl \approx \frac{1}{300}c$

For monolayer graphene the number of flavors $N_f = 2$ (2 C atoms/cell x 2 Dirac points/zone x 2 spins)

Interactions between electrons: an effective field theory (Son, Khveshchenko,...) $S = \sum_{a=1}^{N_f} \int dx_0 d^2 x (\bar{\psi}_a \gamma_0 \partial_0 \psi_a + v_F \bar{\psi}_a \vec{\gamma}. \vec{\nabla} \psi_a + iV \bar{\psi}_a \gamma_0 \psi_a)$ + $\frac{1}{2e^2} \int dx_0 d^3 x (\partial_i V)^2$, \checkmark "instantaneous" Coulomb potential since $v_F \ll c$ - unscreened since $\rho(R)$ 'instantaneous'' Coulomb potential since $v_F \ll c$ - unscreened since $\rho(E=0)=0$ ie. this is not QED₃ Number of "flavors" $N_f = 2$ for monolayer graphene classical 3d Coulomb $\propto r^{-1}$ **V-propagator (large-N_f):** $D(p) = \left(\frac{2|\vec{p}|}{e^2} + \frac{N_f}{8} \frac{|\vec{p}|^2}{(p_0^2 + v_F^2 |\vec{p}|^2)^{\frac{1}{2}}}\right)^{-1}$ quantum screening due $\propto r^{-1}$ to virtual electron-hole pairs $\lambda = \frac{e^2 N_f}{16\varepsilon \varepsilon_0 \hbar v_F} \simeq \frac{1.4 N_f}{\varepsilon}$ (i) parametrises quantum vs. classical (ii) depends on dielectric properties of substrate


For sufficiently large e^2 , or sufficiently small N_f , the Fock vacuum may be disrupted by a particle-hole "excitonic" condensate $\langle \bar{\psi}\psi \rangle \neq 0$

spontaneously breaks $U(2N_f) \rightarrow U(N_f) \otimes U(N_f)$

In particle physics this is "chiral symmetry breaking" (XSB) leading to dynamical mass (gap) generation

> In condensed matter physics this phase is a Mott insulator

Hypothesis: the χ SB transition at $e^2(N_f)$ defines a Quantum Critical Point (QCP) whose universal properties characterise the low-energy excitations of graphene D.T. Son, Phys. Rev. B**75** (2007) 235423

Physically corresponds to a metal-insulator transition of technological importance?

Numerical Lattice Approach

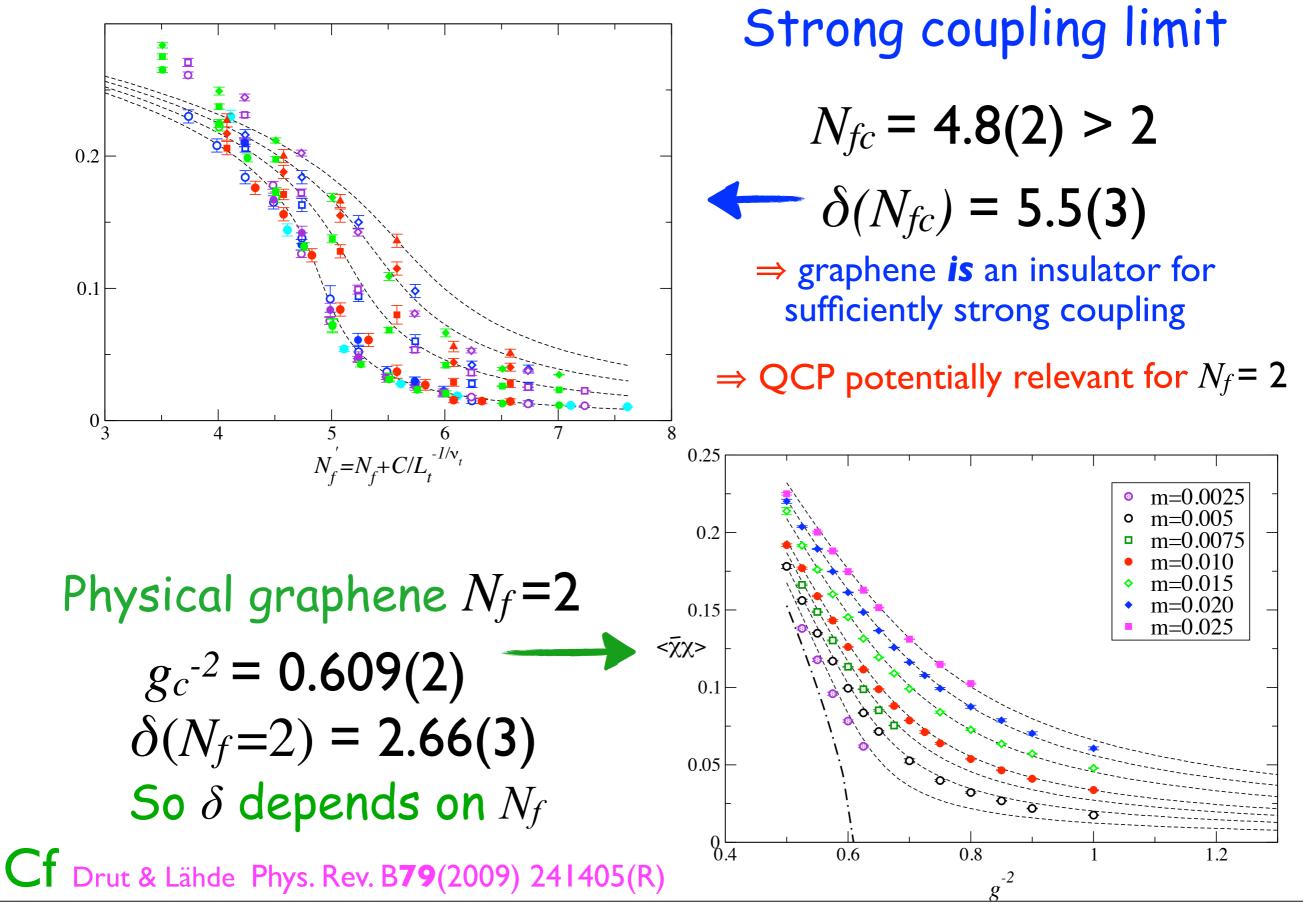
$$S_{latt} = \frac{1}{2} \sum_{x\mu i} \bar{\chi}_x^i \eta_{\mu x} (1 + i\delta_{\mu 0} V_x) \chi_{x+\hat{\mu}}^i - \bar{\chi}_x^i \eta_{\mu x} (1 - i\delta_{\mu 0} V_{x-\hat{0}}) \chi_{x-\hat{\mu}}^i$$

$$+ m \sum_{xi} \bar{\chi}_x^i \chi_x^i + \frac{N}{4g^2} \sum_x V_x^2 \qquad i = 1, \dots, N$$

$$\stackrel{i}{\checkmark} \sum_{xi} \chi_x^i \chi_x^i + \frac{N}{4g^2} \sum_x V_x^2 \qquad i = 1, \dots, N$$
explicit mass gap
$$\chi_x^i, \ \bar{\chi}_x^i \text{ single spin-component fermion fields}$$

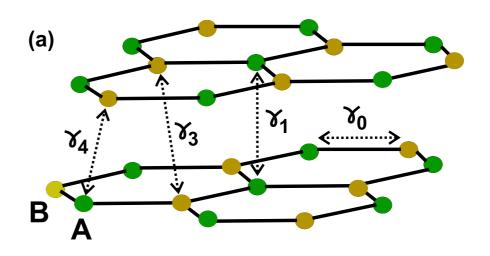
 V_x bosonic auxiliary field defined on link between x and x+0 $\eta_{\mu x} \equiv (-1)^{x_0 + \dots + x_{\mu-1}}$

ensure covariant continuum limit for $g^2=0$

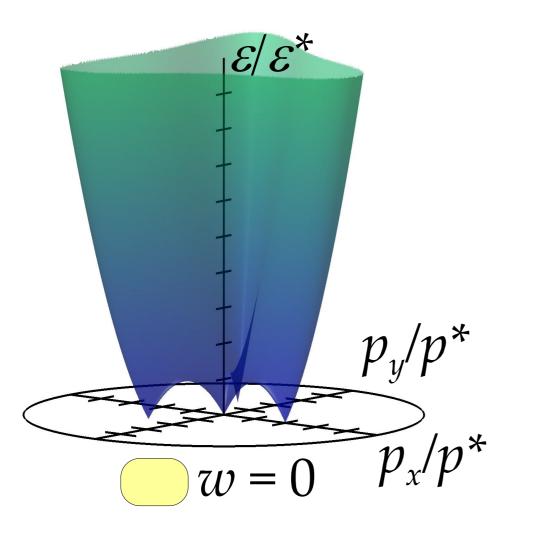

Chiral symmetry: $U(N) \otimes U(N) \rightarrow U(N)$ (if $m \neq 0$)

In weak coupling continuum limit, can show $U(2N_f)$ and Lorentz symmetries are recovered, with $N_f = 2N$

"flavor symmetry restoration"



SJH & C.G. Strouthos, Phys. Rev. B**78**(2008) 165423 W. Armour, SJH & C.G. Strouthos, Phys. Rev. B**81**(2010) 125105



<u>Bilayer graphene</u>

Coupling γ₃≠0 results in trigonal distortion of band and doubles number of Dirac points (Fal'ko PRL96(2006)086805)

 N_f = 4 EFT description plausible for ka $\lesssim \gamma_1\gamma_3/\gamma_0{}^2$

Introduction of a bias voltage between the layers induces electrons on one, holes on the other.

Inter-layer exciton condensation driven by enhanced density of (e,h) states at Fermi surface leads to gap formation? Bilayer effective theory (N=2 staggered flavors)

$$\mathcal{L} = (\bar{\psi}, \bar{\phi}) \begin{pmatrix} D[A; \mu] + m & ij \\ -ij & D[A; -\mu] - m \end{pmatrix} \begin{pmatrix} \psi \\ \phi \end{pmatrix} + \frac{1}{2g^2} A^2$$
$$= \bar{\Psi} \mathcal{M} \Psi_{\cdot} + \frac{1}{2g^2} A^2$$

Bias voltage μ couples to layer fields ψ , ϕ with opposite sign (Cf. isospin chemical potential in QCD)

Intra-layer ($\psi\psi$) and inter-layer ($\psi\phi$) interactions have same strength

"Gap parameters" m, j are IR regulators

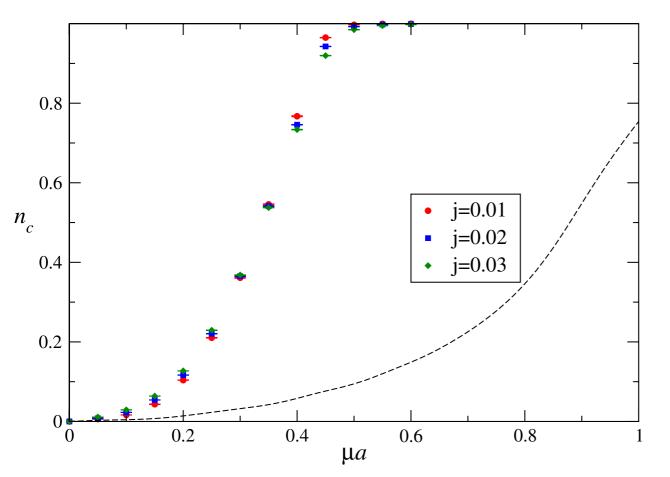
 $D^{\dagger}[A; \mu] = -D[A; -\mu]$. inherited from gauge theory

 $\bigcirc \det \mathcal{M} = \det[(D+m)^{\dagger}(D+m) + j^2] > 0$

No sign problem!

In practice no problem with setting $m\!\!=\!\!0$

Details of the simulation


- Simulate using hybrid Monte Carlo (HMC) algorithm
- no sign problem even with $\mu \neq 0$
- lattice sizes 32³, 48³
- $1/g^2a = 0.4$ throughout close to QCP on chirally symmetric side
- ja = 0.01, ..., 0.07 enables polynomial extrapolation to j=0
- $\mu a = 0.0, \dots, 0.6$

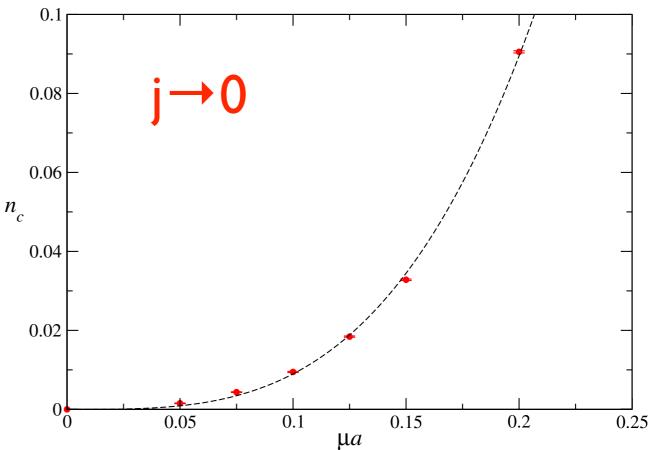
Main observables:

• carrier density $n_c \equiv \frac{\partial \ln Z}{\partial \mu} = \langle \bar{\psi} D_0 \psi \rangle - \langle \bar{\phi} D_0 \phi \rangle.$

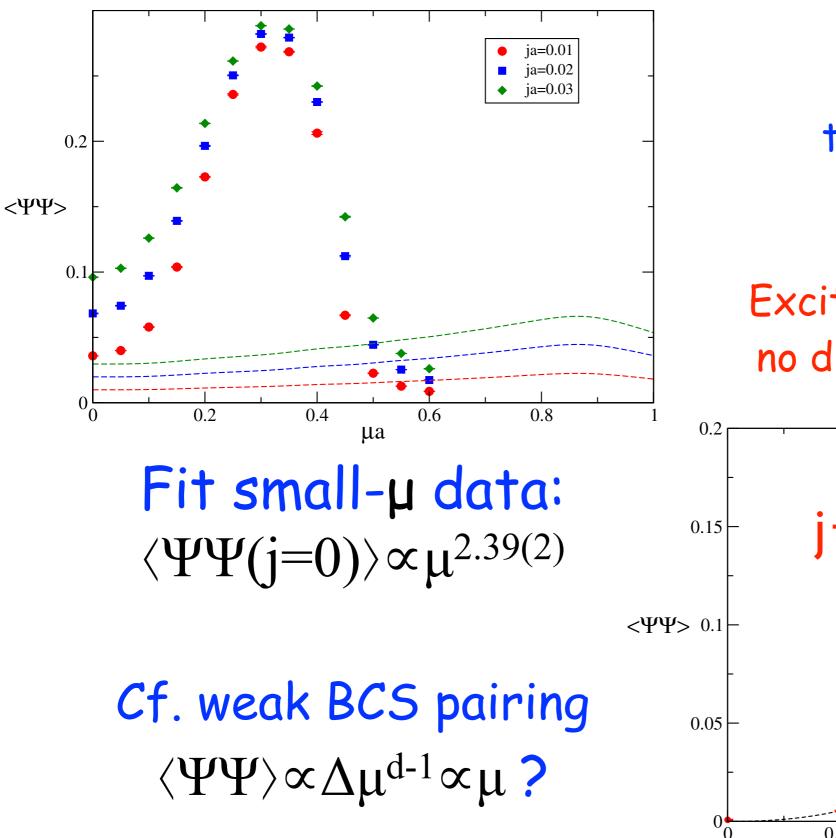
• exciton condensate (interlayer) $\langle \Psi \Psi \rangle \equiv \frac{\partial \ln Z}{\partial j} = i \langle \bar{\psi} \phi - \bar{\phi} \psi \rangle$ • chiral condensate (intralayer) $\langle \bar{\Psi} \Psi \rangle \equiv \frac{\partial \ln Z}{\partial m} = \langle \bar{\psi} \psi \rangle - \langle \bar{\phi} \phi \rangle$

<u>Carrier Density</u>

Fit small- μ data: $n_c(j=0) \propto \mu^{3.32(1)}$

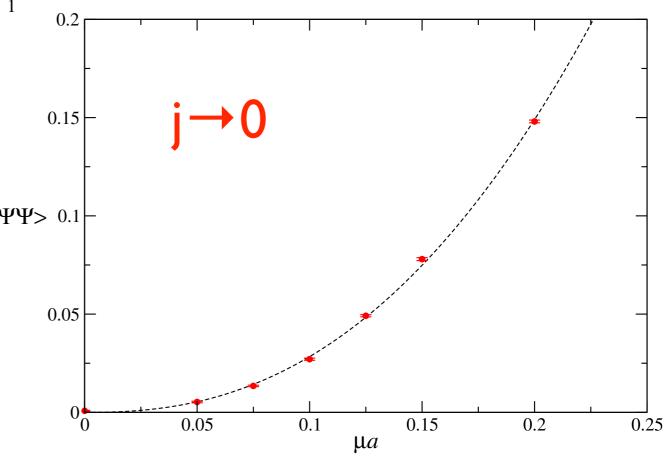

Cf. free-field $n_c \propto \mu^d \propto \mu^2$

Observe premature saturation at $\mu a \approx 0.5$ (other systems typically saturate at $\mu a \approx 1$)

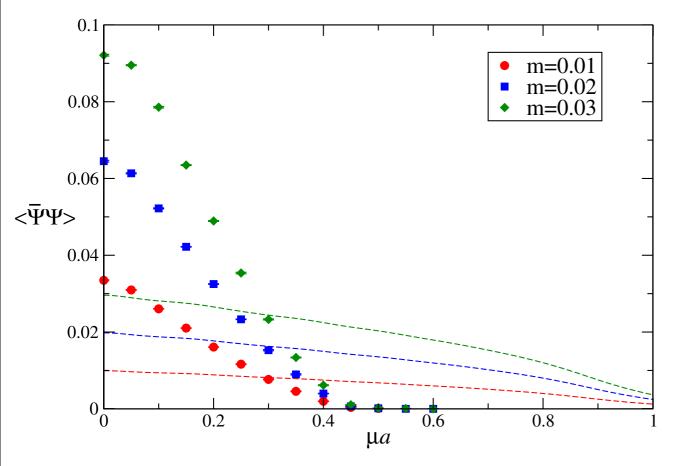

$$\mu \approx E_F < k_F$$

 \Rightarrow

system is strongly self-bound, no discernable onset $\mu_0 > 0$



Exciton Condensate



rapid rise with µ to exceed free-field value, peak at µa≈0.3, then fall to zero in saturation region

Exciton condensation, with no discernable onset $\mu_0 > 0$

<u>Chiral Condensate</u>

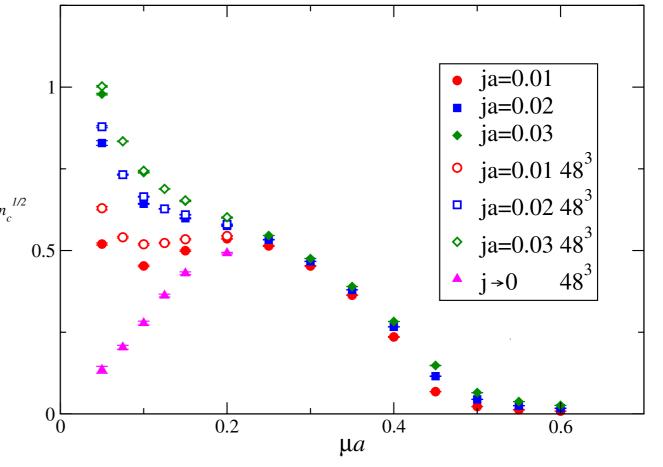
exceeds free-field value for small μ , indicative of nearby QCP, then rapidly falls to zero as μ increases.

Interlayer pairing suppressed as E_F grows

$$|\langle \bar{\Psi}\Psi \rangle| \approx \frac{1}{3} |\langle \Psi\Psi \rangle|_{peak}$$

ie. particle-hole pairing is promoted by the large Fermi surface induced by $\mu \neq 0$

the two condensates compete: $\langle \overline{\Psi}\Psi \rangle < \langle \overline{\Psi}\Psi \rangle_{free}$ when $\langle \Psi\Psi \rangle$ peaks


For a BCS-style condensation - ie. pairing at Fermi surface leading to gap generation $\Delta > 0$

expect
$$\langle \Psi \Psi \rangle \propto \Delta k_F^{d-1} \propto \Delta n_c^{\frac{d-1}{d}}$$

where last step follows from Luttinger's theorem

Thus $\Delta(\mu) \propto \langle \Psi \Psi \rangle / \sqrt{n_c}$

Find near-linear dependence at small μ : expected for conformal behaviour near QCP $_{<\Psi\Psi > m_c}^{\mu_c}$ Cf. NJL model: $\Delta = O(\Lambda_{UV})$ (SJH & D.N.Walters PRD69 (2004) 076011) QC2D: $\Delta = O(\Lambda_{QCD})$ (S. Cotter et al PRD87 (2013) 034507) in both cases (roughly) independent of μ

KF

Summary/Outlook

A new, interesting member of the small class of models permitting MC study with μ≠0 Behaviour qualitatively very different from previous (QC2D, NJL)

here residual interactions at Fermi surface are strong

 $\mathsf{QCP} \Leftrightarrow \Delta = \Delta(\mu)$

Currently studying quasiparticle dispersion E(k) to directly expose Fermi surface (no gauge fixing needed!) In longer term, move to overlap fermions to better reproduce global symmetries