Unitary fermions: a review

Michael G. Endres RIKEN

XQCD2013 Bern, Switzerland August 6, 2013

Outline

- Definitions and motivation
- Low temperature (ground state) properties
- Strategies for studying the system and summary of (some) results
- A few words on finite temperature and related systems
- Summary

Unitary fermions

A dilute mixture of spin 1/2 fermions at infinite two-particle scattering length

2-particle scattering from a short-range potential

$$\mathcal{A}(p) = \frac{4\pi}{M} \frac{1}{p \cot \delta(p) - ip} \qquad p \cot \delta(p) = -\frac{1}{a} + \frac{1}{2}r_0p^2 + \dots$$

$$p = \sqrt{EM} \qquad \uparrow \qquad r = |x_{rel}|$$
scattering phase shift
$$\mathbf{V}_0 \qquad \lim_{p \to 0} \sigma_0(p) = 4\pi a^2$$

radial profile of spherically symmetric potential

2-particle scattering from a short-range potential

Many-body X challenge (circ. 1999)

George Bertsch: What are the ground state properties of the <u>many-body</u> system composed of spin-1/2 fermions interacting via a zero-range, infinite scattering-length contact interaction?

http://www.phys.washington.edu/users/bertsch/

- Original motivation: a model for dilute neutron matter
- Major advances on *all* fronts:
 - experiment
 - analytical calculation
 - Inumerical simulations

Interacting Fermi gas

Interacting Fermi gas

In the unitary limit, the properties of the system are universal in the sense that they are independent of the details of the interaction

Example I: free energy (homogeneous)

Observables are functions of two parameters:

For this talk I'll take $\theta = 0$

Equation of state at zero temperature

Example 2: pairing gap (homogeneous)

 Δ = half the energy required to split a fermion pair

Physical realization: ultra-cold atoms

Science, 298, pp. 2179-2182 (2002)

$$r_0({}^{40}K) \sim 60a_0$$
 (Bohr radius)
 $r_0({}^{6}Li) \sim 30a_0$
 $\rho^{-1/3} \sim 5000 - 10000a_0$
Interacting gas of fermions
(e.g., ${}^{6}Li$ or ${}^{40}K$ atoms)

Physical realization: ultra-cold atoms

Science, 298, pp. 2179-2182 (2002)

$$r_0({}^{40}K) \sim 60a_0$$
 (Bohr radius)
 $r_0({}^6Li) \sim 30a_0$

$$\rho^{-1/3} \sim 5000 - 10000a_0$$

Interaction strength tuned by exploiting properties of a Feshbach resonance

Feshbach resonances

Feshbach resonances

Example: direct observation of superfluidity

Interaction parameter, $1/k_{F}a$

BCS→

- BEC

Example: direct observation of superfluidity

Nuclear physics: light nuclei

Unitary fermions can provide a starting point for an effective field theory description for nuclear physics

Michael G. Endres (RIKEN) • Unitary fermions • August 6, 2013

D. Lee (Aug. 6 @ 11am)

Effective field theory description

$$S = \int d^{D+1}x \left[\psi^{\dagger} \left(\partial_{\tau} - \frac{\nabla^2}{2M} - \mu \right) \psi + C_0 (\psi^{\dagger} \psi)^2 \right]$$

$$\psi = (\psi_{\uparrow}, \psi_{\downarrow})$$

D=3 dimensions
(Euclidean space)

zero-range contact interaction

Effective field theory description

$$S = \int d^{D+1}x \left[\psi^{\dagger} \left(\partial_{\tau} - \frac{\nabla^2}{2M} - \mu \right) \psi + C_0 (\psi^{\dagger} \psi)^2 \right]$$

Relationship between coupling (C_0) and scattering length:

Effective field theory description

$$S = \int d^{D+1}x \left[\psi^{\dagger} \left(\partial_{\tau} - \frac{\nabla^2}{2M} - \mu \right) \psi + C_0 (\psi^{\dagger} \psi)^2 \right]$$

Relationship between coupling (C_0) and scattering length:

Symmetries of free and unitary fermions

Conformal transformation:

$$x \to \frac{x}{1+\lambda t}$$
 $t \to \frac{t}{1+\lambda t}$ $\psi \to (1+\lambda t)^{3/2} e^{\frac{-iM\lambda x^2}{2(1+\lambda t)}} \psi$

Scale transformation:

$$x \to \lambda x$$
 $t \to \lambda^2 t$ $\psi \to \lambda^{-3/2} \psi$

(these, combined with rotations, translations, etc., are generated by the Schrödinger algebra)

T. Mehen, et al., Phys. Lett. B **474** (2000) 145 Y. Nishida, et al, Phys. Rev. D **76** (2007) 086004

Virial theorems

Conformal symmetry and scale invariance implies:

$$\langle H^n \rangle = \langle V^n \rangle$$
 (for any trapped state, any n)

T. Mehen, Phys. Rev. A 78 (2008) 013614

Operator-state correspondence

(follows from conformal symmetry and scale-invariance) Y. Nishida and D.T. Son (2007)

"primary" operator constructed $H^{osc} = H + V$ from N creation operators and having scaling dimension Δ_{O} $|\Psi_{\mathcal{O}}\rangle = e^{-H/\omega}\mathcal{O}$ $H^{osc}|\Psi_{\mathcal{O}}\rangle = \omega\Delta_{\mathcal{O}}|\Psi_{\mathcal{O}}\rangle$ harmonic trap free space

Operator-state correspondence

(follows from conformal symmetry and scale-invariance) Y. Nishida and D.T. Son (2007)

"primary" operator constructed from N creation operators and having scaling dimension Δ_{o}

$$H^{osc} = H + V$$

$$|\Psi_{\mathcal{O}}\rangle = e^{-H/\omega}\mathcal{O}^{\dagger}|0\rangle$$

$$H^{osc}|\Psi_{\mathcal{O}}\rangle = \omega\Delta_{\mathcal{O}}|\Psi_{\mathcal{O}}\rangle$$

N	ℓ	${\cal O}$	$\Delta_{\mathcal{O}}$	Reference
2	0	$\psi_{\uparrow}\psi_{\downarrow}$	2	S.Tan (2004)
3	0	$\psi_{\uparrow}\psi_{\downarrow}\partial_t\psi_{\uparrow}$	4.66622	S.Tan (2004)
3	I	$\psi_{\uparrow}\psi_{\downarrow} abla\psi_{\uparrow}$	4.27272	S.Tan (2004)
4	0	$\psi_{\uparrow}\psi_{\downarrow}\vec{\nabla}\psi_{\uparrow}\cdot\vec{\nabla}\psi_{\downarrow}$	5.I(I) 5.07(I)	S.Y. Chang, et al. (2007) J. von Stecher, et al. (2007)

Contact density

Provides a link between the <u>microscopic</u> properties of the system to the <u>macroscopic</u> properties of the system (examples on the next slides)

$$\mathcal{C}(x) = g^2 \langle \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\uparrow} \psi_{\downarrow}(x) \rangle \qquad \qquad C = \int d^3 x \, \mathcal{C}(x)$$

Plays central role in universal (Tan) relations

- away from unitarity
- at finite temperature

Universal (Tan) relations

- First derivation (~2005) used generalized functions (distributions) to handle singularities in the zero-range limit:
 - S.Tan, Annals of Physics 323, 2952 (2008), cond-mat/0505200
 - S.Tan, Annals of Physics 323, 2971 (2008), cond-mat/0508320
 - S.Tan, Annals of Physics 323, 2987 (2008), arXiv:0803.0841
- Derivations based on quantum field theory methods (i.e., operator-product expansion):
 - E. Braaten and L. Platter, Phys. Rev. Lett. 100, 205301 (2008)
 - E. Braaten, D. Kang, and L. Platter, Phys. Rev. A 78, 053606 (2008), arXiv: 0806.2277

Universal (Tan) relations: microscopic

Fall-off of momentum distribution:

Local pair density:

Number of fermion pairs in a small sphere of radius s (computable from density-density correlator)

$$\mathcal{C} = \lim_{s \to 0} \frac{4}{s^4} N_{pair}(s)$$

$$C = \lim_{k \to \infty} k^4 \rho_{\sigma}(k)$$

$$\mathcal{C} = \lim_{s \to 0} \frac{4}{s^4} N_{pair}(s)$$

Universal (Tan) relations: macroscopic

Generalized virial theorem:

Pressure relation:

Adiabatic sweep theorem:

(and several more)

$$C = (-4\pi M) \frac{\partial E}{\partial a^{-1}}$$

 $\langle H \rangle = \langle V \rangle - \frac{C}{8\pi Ma}$

 $\mathcal{P} = \frac{2}{3}\mathcal{E} + \frac{\mathcal{C}}{12\pi Ma}$

Dimensionless contact

Experimental verification of Tan's relations

Contact measured directly from momentum distribution of the density (harmonically trapped ⁴⁰K atoms)

J.T. Stewart, et al., Phys. Rev. Lett. 104 (2010) 235301

Michael G. Endres (RIKEN) • Unitary fermions • August 6, 2013

Strategies

- Experimental measurement (ultracold atoms)
 - enormous advances in techniques and precision
 - primary driving force behind theoretical investigations
- Analytical calculations
 - mean field, extrapolation from BCS regime, ε-expansion,...
 - generically possess uncontrolled systematic errors
- Numerical calculations
 - Quantum Monte Carlo
 - Density Functional Theory

Numerical strategies (too many!)

- Diffusion Monte Carlo variational
 - coordinate space (continuum), fixed-node wavefunctions
- Greens Function Monte Carlo variational
- Auxiliary Field Monte Carlo
 - interactions induced via auxiliary fields
 - most similar to lattice QCD methods
- (Bold-line) Diagrammatic Monte Carlo

N. Prokof'ev, B. Svistunov Phys. Rev. Lett. **99** (2007) 250201

- samples the space of Feynman diagrams
- simulation performed in the thermodynamic limit
- Diagrammatic Determinant Monte Carlo

Numerical strategies (here's one)

- Auxiliary Field Monte Carlo
 - interactions induced via auxiliary fields
 - most similar to lattice QCD methods

Nice review article: "Lattice methods for strongly interacting many-body systems" J. E. Drut and A. N. Nicholson, J. Phys. G **40** (2013) 043101

Auxiliary Field Monte Carlo

$$S = \int d^{D+1}x \left[\psi^{\dagger} \left(\partial_{\tau} - \frac{\nabla^2}{2M} - \mu + \phi \right) \psi + \frac{m^2}{2} \phi^2 \right]$$

Hubbard-Stratonovich transformation

Michael G. Endres (RIKEN) • Unitary fermions • August 6, 2013

Auxiliary Field Monte Carlo

$$Z = \int [d\phi] e^{-\frac{m^2}{2}\phi^2} \det \left(\partial_\tau - \frac{\nabla^2}{2M} - \mu + \phi\right)^2$$
(positive definite)
(open BCs)
$$det \left(1 - \frac{\nabla^2}{2M}\right)^{2N_\tau}$$

$$det \left(1 - \frac{\nabla^2}{2M}\right)^{-1}$$

Single fermion propagator: $S(\phi) = \left(\partial_{\tau} - \frac{v}{2M} - \mu + \phi\right)$

Fermions propagating on a random background

 $\sim e^{-b_{\tau}N_{\tau}E_{gnd}} + \text{excited}$

Numerical strategies: Lattice Monte Carlo

Required hierarchy of scales:

$$r_0 \sim b_s \ll p_F^{-1} \ll L \ll a$$

$$b_\tau \ll E_F^{-1} \ll \beta$$

 $1 \ll N$

Removal of systematic errors

For <u>canonical</u> ensemble simulations, continuum limit is the same as the infinite volume limit!

- Tune the scattering length to infinity
- Estimate observables, measured in appropriate units of L (L_0) and E_F (ω)
- Perform infinite volume extrapolations
- Repeat for several values of N and extrapolate N to infinity

Removal of effective range effects

Bertsch parameter (ξ)

Bertsch parameter (ξ)

Dimensionless contact (homogeneous)

Dimensionless contact

Pairing gap (Δ)

FIG. 3. The E(N) in units of E_{FG} .

Pairing gap (Δ)

Pairing gap (Δ)

Finite Temperature

- Superfluid-normal phase transition temperature $T_c/E_F \sim O(I)$
 - experimentally and numerically accessible
 - $T_c/E_F \sim 0.167(13)$ (exp.)
 - $T_c/E_F \sim 0.171(5)$ (DDMC)
- M. J. Ku, et al., Science **335** (2012) 563

O. Goulko, et al., Phys. Rev. A **82** (2010) 053621 O. Goulko, Lattice 2013 (poster session)

- many many numerical studies
- Shear viscosity
 - evidence η/s approaches Kovtun-Son-Starinet (KSS) bound slightly above T_c
 - η/s ~ 0.2 ħ/kB
 G.Wlazłowski, et al., Phys. Rev. Lett. 109 (2012) 020406

Universal fermi gases in lower dimensions

"Universal Fermi gases in mixed dimensions" Y. Nishida and S. Tan Phys. Rev. Lett. **IOI**, 170401 (2008)

"Universal four-component Fermi gas in one dimension" Y. Nishida and D.T. Son Phys. Rev. A **82**, 043606 (2010)

- I+I space-time dimensions
- 4-component Fermi gas
- Attractive 4-body contact interaction tuned to zero-energy bound state
- Qualitatively identical zero-temperature properties as in 3D

Unitary Fermions in one-dimension

Comparison of Id and 3d Bertsch parameters

Summary

- Unitary fermions are an exciting subject!
 - strong interplay between experiment and theory
- Despite their apparent simplicity, unitary fermions remain challenging to study nonperturbatively
 - substantial progress in analytical and numerical techniques
 - provide a testing ground for new theoretical methods
 - widely varied results from simulation (e.g. contact)
 - many remaining open questions, new avenues for exploration
- Potential connections between unitary fermions in different dimensions?

Thank you for your attention!