<u>News and theoretical challenges</u> from recent heavy ion experiments

> Urs Achim Wiedemann CERN PH-TH

XQCD, Workshop on QCD under extreme conditions 5 August 2013, Bern

Program for XQCD 2013

Workshop on QCD under extreme conditions

Bern, 5-7 August 2013

Monday, August 5

08:30	Registration opens			<i>,</i>	
09-30	Welcome		09:15	Heiri Leutwyler	The mass of the two lightest quarks
00.45	Ure Wiedemann	Nows and theoretical challenges from recent heavy ion experiments	10:00	Christian Schmidt	The strange degrees of freedom in QCD at high temperature
10.30	Coffee Break	News and theoretical chanenges from recent newy for experiments	10:30	Coffee Break	
11:00	Guy Moore	NLO calculations at finite temperature and the lightcone	11:00	Dean Lee	Lattice effective field theory for nuclear physics
11:45	Kari Rummukainen	Ohat from EQCD	11:45	Sourendu Gupta	The QCD critical point
12:15	Sevong Kim	Lattice NRQCD study of bottomonium around the deconfinement temperature	12:15	Andrei Alexandru	QCD at imaginary chemical potential with Wilson fermions
	boyong timi		12:45	Lunch	
12:45	Lunch		14:00	Michael Endres	Unitary fermions
14:00	Harvey Meyer	Non-perturbative approaches to transport properties	14:45	Simon Hands	A strongly-interacting Fermi surface? Voltage-biased bilayer graphene
14:45	Bastian Brandt	and spectral functions in hot QCD QCD thermodynamics with $O(a)$ improved Wilson fermions at $Nf = 2$	15:10	Yuji Sakai	Analytic continuation in two color QCD with clover-improved Wilson fermion at finite density
15:10	Heng-Tong Ding	QCD transition at finite temperature with domain wall fermions	15:35	Coffee Break	
15:35	Coffee Break		16:10	Rajiv Gavai	Quark number susceptibility divergence can be subtracted off
16:10	Yu Maezawa	Meson screening masses at finite temperature with highly improved staggered quarks	16:35	Jacques Bloch	Solving the sign problem in one-dimensional QCD
16:35	Oscar Akerlund	Scale hierarchy in high-temperature QCD	17:00	Thomas Kloiber	Dual methods for lattice field theories at finite density
	Sponsor talks	Poster session opens	17:25	Kim Splittorff	The QCD sign problem as a total derivative
17:00	Mike Clark	TBA	17:50	Group photo	
17:30	Edmund Preiss	Intel's HPC and Xeon Phi oriented Software development tools	19:00	Dinner	Restaurant Rosengarten
18:00	Apero	Poster session continues			

Tuesday, August 6

How to learn about <u>'QCD under extreme conditions'</u> via data from heavy ion experiments?

<u>1. Flow</u>

as the dynamic manifestation of QCD thermodynamics

2. Hard Probes

- as "DIS of the QGP" (jet quenching)
- as "QCD thermometer" (quarkonia)

3. Searches

- critical point
- chiral magnetic, chiral vortical effect

- ...

Why is a fluid dynamic description of interest?

Dissipative fluid dynamics is

based <u>only</u> on: E-p conservation:

 2^{nd} law of thermodynamics: ∂

 $\partial_{\mu}S^{\mu}(x) \ge 0$

 $\partial_{\mu}T^{\mu\nu} = 0$

• sensitive <u>only</u> to properties of matter that are

calculable from first principles in quantum field theory

Find Toppool V
V
$$F(r) = \sum_{w \to 0} \frac{1}{2w} \int dt \, dx \, e^{i\omega t} \left\langle \left[T^{xy}(x,t), T^{xy}(0,0) \right] \right\rangle_{eq} \right\rangle$$

$$F(r) = \sum_{w \to 0} \frac{1}{2w} \int dt \, dx \, e^{i\omega t} \left\langle \left[T^{xy}(x,t), T^{xy}(0,0) \right] \right\rangle_{eq} \right\rangle$$

$$F(r) = F(r) = F(r)$$

The limiting case of perfect fluid dynamics

Viscous fluid dynamics

Characterizes dissipative corrections in gradient expansion

$$N_i^{\mu} = n_i u^{\mu} + \overline{n_i}$$
 (4n comp.) (*n comp.*)
 $T^{\mu\nu} = \varepsilon u^{\mu} u^{\nu} - p \Delta^{\mu\nu} + q^{\mu} u^{\nu} + q^{\nu} u^{\mu} + \Gamma^{\mu\nu}$ (10 comp.) (5 comp.)
To close equation of motion, supplement conservation laws and eos
 $\partial_{\mu} N_i^{\mu} \equiv 0$ (*n constraints*) $p = p(\varepsilon, n)$ (1 constraint)
 $\partial_{\mu} T^{\mu\nu} \equiv 0$ (4 constraints) $p = p(\varepsilon, n)$ (1 constraint)
by point-wise validity of 2nd law of thermodynamics
 $T \partial_{\mu} S^{\mu}(x) \ge 0$ $S^{\mu} = s u^{\mu} + \beta q^{\mu} + O(\nabla^2)$
The resulting Israel-Stewart relativistic fluid dynamics depends in
general on
relaxation times
and
transport coefficients.
 $(\varepsilon + p)Du^{\mu} = \nabla^{\mu}p - \Delta_{\nu}^{\mu}\nabla^{\sigma}\Pi^{\nu\sigma} + \Pi^{\mu\nu}Du_{\nu}$
 $D\varepsilon = -(\varepsilon + p)\nabla_{\mu}u^{\mu} + \frac{1}{2}\Pi^{\mu\nu}\langle\nabla_{\nu}u_{\mu}\rangle$

Elliptic Flow: hallmark of a collective phenomenon

How to measure flow?

How to establish QCD hydrodynamics?

Determining Impact Parameter b

 In AA (unlike pp), multiplicity distribution is dominated by geometry (impact parameter dependence)

A. Bialas and W. Czyz, Nucl. Phys. B111 (1976) 461

Particle production w.r.t. reaction plane

Consider single inclusive particle momentum spectrum

$$f(\vec{p}) = dN/E d\vec{p}$$
$$\vec{p} = \begin{pmatrix} p_x = p_T \cos\phi \\ p_y = p_T \sin\phi \\ p_z = \sqrt{p_T^2 + m^2} \sinh Y \end{pmatrix}$$

To characterize azimuthal asymmetry, measure n-th harmonic moment of f(p).

$$v_{n} = \left\langle \left\langle e^{i n \phi} \right\rangle \right\rangle = \left\langle \frac{\int d\vec{p} \, e^{i n \phi} f(\vec{p})}{\int d\vec{p} \, f(\vec{p})} \right\rangle_{event}$$

n-th order flow

iverage

Problem: This expression cannot be used for data analysis, since the orientation of the reaction plane is not known a priori.

Measuring flow – one procedure

• Want to measure particle production as function of angle w.r.t. reaction plane

But reaction plane is unknown ...

• Have to measure particle correlations:

$$\left\langle e^{i n(\phi_1 - \phi_2)} \right\rangle_{D_1 \wedge D_2} = v_n(D_1) v_n(D_2) + \left\langle e^{i n(\phi_1 - \phi_2)} \right\rangle_{D_1 \wedge D_2}^{corr} \quad \text{``Non-flow effects''} \\ \hline \sim O(1/N)$$

But this requires signals $v_n > \frac{1}{\sqrt{N}}$

• Improve measurement with higher cumulants: Borghini, Dinh, Ollitrault, PRC (2001)

$$\left\langle e^{i\,n(\phi_1+\phi_2-\phi_3-\phi_4)} \right\rangle - \left\langle e^{i\,n(\phi_1-\phi_3)} \right\rangle \left\langle e^{i\,n(\phi_2-\phi_4)} \right\rangle - \left\langle e^{i\,n(\phi_1-\phi_4)} \right\rangle \left\langle e^{i\,n(\phi_2-\phi_3)} \right\rangle = -v_n^4 + O(1/N^3)$$

This requires signals $v_n > \frac{1}{N^{3/4}}$

0.05

0

0

10

20

 p_{T} -integrated v_{γ}

v₂ (charged hadrons)

V₂{6}

30

 $v_2{2} (|\Delta \eta| > 0)$ $v_2{2} (|\Delta \eta| > 1)$

40

50

60

centrality percentile

70

80

 $N \sim 100 - 1000 \Rightarrow 1/\sqrt{N} \sim 0.1 \sim O(v_2) ??$

2nd order cumulants do not characterize solely collectivity.

 $1/N^{3/4} \sim \le 0.03 < < v_2$

The appropriate dynamical framework

 depends on mean free path (more precisely: depends on applicability of a quasi-particle picture)

Fluid dynamic prior to LHC - results

Implications of minimal viscosity

Phenomenological implication

Minimal dissipation \Leftrightarrow Maximal Transparency to Fluctuations

$$\delta v(\tau,k) \propto \left(\frac{\tau_0}{\tau}\right)^* \exp\left[-\Gamma_s k^2(\tau_0-\tau)\right]$$

Fluctuations decay on time scale,

$$\tau_{1/e}(k) = \frac{1}{\Gamma_s k^2}$$

$$\tau_{1/e}(k = 1 fm^{-1}) \approx 10 - 20 fm$$

$$\tau_{1/e}(k = (0.5 fm)^{-1}) \approx 2.5 - 5 fm$$

Models of the initial density distributions in AA-collisions show generically a set of event-by-event **EbyE fluctuations**

asymmetries v_n in momentum distributions? (Historically, Alver and Roland identified in 2009 this triangularity as the origin of a v3-like structure seen in data.)

Flow as linear response to spatial asymmetries

Characterize spatial eccentricities, e.g., via moments of transverse density

is related approx. linearly to

(momentum) flow

$$v_n \propto \varepsilon_n$$

Hydrodynamics propagates EbyE fluctuations

- Fluid dynamics maps initial spatial eccentricities onto measured v_n
- 3+1 D viscous hydrodynamics with suitably chosen initial conditions reproduces v₂,v₃,v₄,v₅ in p_T and centrality

B. Schenke, MUSIC, .QM2012

Theoretical challenges 'Flow'

A (valid) analogy – how far can it be pushed?

From a signal ... via fluctuations ..

.... to properties of matter

Do smaller systems show flow: pPb?

How can non-abelian plasmas thermalize quickly?

- Model-dependent in QCD but a rigorously calculable problem of numerical gravity in AdS/CFT
- Very fast non-perturbative isotropization

- M. Heller, R. Janik et al, PRL, 1202.0981
- The first rigorous field theoretic set-up in which fluid dynamics applies at very short time scales
- $\alpha_{s} \gg 1 \implies 0.65 \le \tau_{0} T_{0}$
- These non-abelian plasma are unique in that they do not carry quasi-particle excitations:

perturbatively require
$$\tau_{quasi} \sim \frac{1}{\alpha_s^2 T} >> \frac{1}{T}$$

but $\tau_{quasi} \approx \frac{const}{T} \frac{\eta}{s}$

...and another theoretical challenge within the focus of XQCD:

What are the prospects of improved lattice QCD calculations of

transport coefficients? relaxation times?

(strong coupling results exist for the plasmas of QFTs with gravity dual)

Hard Probes

Hard Probes of Dense Matter

To test properties of QCD matter, large- Q^2 processes provide well-controlled tools (<u>example: DIS</u>).

Heavy Ion Collisions produce <u>auto-generated probes</u> at high $\sqrt{s_{NN}}$

Q: How sensitive are such 'hard probes'?

Bjorken's original estimate and its correction

Bjorken 1982: consider jet in p+p collision, hard parton interacts with underlying event <u>collisional energy loss</u>

 $dE_{coll}/dL \approx 10 \, GeV/fm$ (error in estimate!)

Bjorken conjectured monojet phenomenon in proton-proton

But: radiative energy loss expected to dominate

$$\Delta E_{rad} \approx \alpha_s \hat{q} L^2$$
 Baier Dokshitzer Mueller Peigne Schiff 1995

• p+p:
$$L \approx 0.5 \text{ fm}, \Delta E_{rad} \approx 100 \text{ MeV}$$
 Negligible

• A+A:
$$L \approx 5 \ fm, \ \Delta E_{rad} \approx 10 \ GeV$$

Monojet phenomenon! Observed at RHIC

Parton energy loss - a simple estimate

Medium characterized by transport coefficient:

$$\hat{q} \equiv \frac{\mu^2}{\lambda} \propto n_{density}$$

• How much energy is lost ?

Phase accumulated in medium:

Number of coherent scatterings:
$$N_{coh} \approx \frac{t_{coh}}{\lambda}$$
, where $t_{coh} \approx$

Characteristic
gluon energy
$$=\frac{2\omega}{k_T^2} \approx \sqrt{\omega/\hat{q}}$$

 $k_T^2 \approx \hat{q} t_{coh}$

Gluon energy distribution: $\omega \frac{dI_{med}}{d\omega dz} \approx \frac{1}{N_{coh}} \omega \frac{dI_1}{d\omega dz} \approx \alpha_s \sqrt{\frac{\hat{q}}{\omega}}$

Average energy loss $\Delta E = \int_0^L dz \int_0^{\omega_c} d\omega \,\omega \frac{dI_{med}}{d\omega \, dz} \sim \alpha_s \omega_c \,\sqrt{\alpha_s q L^2}$

 $\left\langle k_T^2 \Delta z \right\rangle \approx \frac{\hat{q}L^2}{\omega_c}$

Dijet asymmetries at LHC

Jet Finding at high event multiplicity (exp)

• Impressive experimental checks

energy 'lost' from jet cone

- found completely out-of-cone
- found in soft components at very large angles

 Angular distribution of dijets almost unchanged

Jet quenching – formation times

- Energy transported from hard to soft scale
- Energy at soft scales transported away from jet within finite time $\tau_{transport} \approx 5 10 \, fm/c$
 - Which modes ω can form in this time?

In vacuum, soft modes form late

•

In medium, with perturbative BDMPS-Z quenching they form **early**

$$\tau_f^{med} \cong \frac{\omega}{k_T^2} = \frac{\omega}{\hat{q}\tau_f^{med}} = \sqrt{\frac{\omega}{\hat{q}}}$$

J. Casalderrey-Solana, G. Milhano, U.A. Wiedemann, arXiv:1012.0745

How far can we push a perturbative description?

Perturbative description of 'high-pt' jet quenching fairs well

Theoretical challenges 'Hard Probes'

- How can perturbative jet evolution be reconciled with nonperturbative collective dynamics?
- "<u>Jet quenching MCs</u>": How to formulate a medium-modified parton shower?
- "*Jet finding*": Which jet measurements can be performed reliably within a high multiplicity background?
- "*Medium response*": How to establish it, since it must exist?
- "<u>Quarkonia</u>": How to calculate suppression within a strongly expanding medium?

End