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|—Introduction

1. Introduction

» The chiral limit at Ng =2

» Plasma properties near the phase transition
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Directly accessible: Zero density (1 = 0)

Enlarged parameter space relevant for the QCD phase diagram:
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[ Kanaya, PoS LAT 2010 012 ]

» The charm quark is to heavy to influence the transition properties.
(might affect plasma properties above T.)

> Isospin breaking effects probably also not to important.
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N¢ = 2 transition and tricritical point

Two possible scenarios:
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» We know it is a true phase transition. [ Pisarski, Wilczek, PRD 29, 338 (1984) ]

» But it can be of first or second order! [ Butti et al, JHEP 0308, 029 (2003) ]
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Assessing the two scenarios — Scaling

» Cannot simulate directly in (or very close to) the chiral limit.
> Only possibility:
Simulate at larger quark masses in the crossover region and look for
critical scaling in the approach to the chiral limit at constant m;.
> What type of scaling can be expected in the two cases?
> O(4): usual O(4) scaling
Order parameter: Chiral condensate
> First order: Z(2) scaling
(or some remnant of first order?)
Order parameter: 7?77

» How close to m,qs = 0 is necessary?
(Probably even below physical myq)

> Simulations at small quark masses are expensive!
(especially for non-staggered fermion actions)

» There is a number of studies but no conclusive result!
(contradicting results for staggered; no reliable chiral extrapolation for other
fermion discretisations)
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Assessing the two scenarios — Ua(1) symmetry

Of particular importance:
Strength of the anomalous breaking of the Ua(1) symmetry:
[ Pisarki, Wilczek, PRD 29, 338 (1984) ]
[ Butti et al, JHEP 0308, 029 (2003) ]

» If the breaking is strong:
Transition: Second order SU(2) x SU(2) ~ O(4) universality

» If the breaking is weak, or the symmetry restored:
Transition: First order (or second order 2 O(4)).

Possibilities for looking at the strength of the breaking:
> Look at suszeptibilities.
> Look at degeneracies of correlation functions and screening masses in

pseudoscalar (P) and scalar channels (S).

= Chiral extrapolation is mandatory!
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Assessing the two scenarios - Our choice

Simulate at Nf = 2:
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» Simulations are less expensive than for Nf =2 + 1.

» Can use Wilson fermions on large lattices using the available fast
algorithms and the T = 0 input from CLS.

> Also look at screening masses and Ua(1) symmetry restoration.
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Plasma properties near the phase transition

For hydrodynamic calculations and to explain phenomena observed in
experiment:
Extract transport coefficients and particle production rates from the lattice!

[ see previous talk by Harvey ]

Our study vyields large lattices around Tc.
= Can be used to study plasma properties!
Measurement of the electrical conductivity:

» Have extracted the electrical conductivity with dynamical fermions at
T =~ 250 MeV (= See end of my talk!).
[ BB et al, JHEP 1303, 100 (2013) |

» Crucial for this was the use of the reconstructed correlator in combination
with a related sum rule.
[ Bernecker, Meyer, EPJ A47, 148 (2011) ]

> We are aiming to extend this analysis over the full scan at
my; =~ 290 MeV.

Other plasma properties will be studied in the future ...
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Action and scale setting

Action: Non-perturbatively O(a)-improved Wilson fermions
Wilson plaquette gauge action

Algorithms: deflation accelerated DD-HMC

[ Liischer (2004-2005), e.g. CPC 165, 199 (2005) |
MP-HMC with DFL-SAP-GCR solver

[ Marinkovic, Schafer PoS LAT 2010, 031 (2010) ]
= Good scaling properties with volume and quark masses!

Scale setting: rp in the chiral limit as determined by CLS
[ Fritzsch et al, NPB 865, 397 (2012) ]

Mass scale: PCAC mass converted to MS scheme

Renormalisation: Interpolation of ALPHA results as used within CLS.
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Temperature scan setup

Basic strategy:
» Use N; = 16 for all scans.

> Use 3 different volumes: 32°, 48% and 64°.
(enables a finite volume scaling study; control FS effects)

> At least 3 different pion masses below m, <300 MeV.
(ideally even below the physical point)

» We scan in §:

» First attempts: keep « fixed

= Quark mass changes along the scan.

(is problematic for Wilson fermions at small quark masses)
» Now: Keep renormalised quark mass fixed!

= Line of constant physics (LCP)

(conceptually much cleaner)
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Observables

Chiral transition:

> Chiral condensate (1));  (subtracted and bare)
Order parameter of the transition in the chiral limit.
(Problematic due to additive and multiplicative renormalisation)

> Screening masses in various channels;
Sensitive to chiral symmetry restoration pattern.

Deconfinement:

> Polyakov loop L;  (APE smeared and unsmeared)
Order parameter of the transition in the pure gauge limit.

> Quark number suszeptibility xq;
Measures the net number of quarks.

Note: At the moment all quantities are not renormalised properly!

(no T = 0 subtractions)
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3. Status of temperature scans
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Overview over simulation points
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> LCP at m; =~ 290 MeV not perfect for T > 210 MeV.
(recent updates on T = 0 results)
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First LCP at m, =~ 290 MeV
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First LCP at m, =~ 290 MeV
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LCP at m, ~ 200 MeV
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LCP at m, ~ 200 MeV
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Transition temperatures and scaling

Scaling of T¢:
Tc(mud) =

Tc(0) [1 + C (Mg — mo)l/(sﬂ)]
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Vector correlator and electrical conductivity

[ BB et al, JHEP 1303, 100 (2013) ]
Co(T) _ Cem o pi(w, T)
Kubo formula: ? =S T U!,lino wiT

puv(w, T): Spectral function associated with G, (7, T) via

[T dw cosh [w(1/(2T) — 7)]
G (7 T) _/ 27 Por(@T) sinh (w/2T)

Strategy:
> Extract G, (7, T) from the lattice!
> Use the reconstructed correlator G/5°(, T) = >, Guw (IT +m/T|, T = 0)
> and the sum rule [ 92 [p;(w, T) — p;i(w,0)] = 0.
> Fit the difference AG;i(7, T) = Gi(7, T) — G;*°(7, T) to a
phenomenologically motivated ansatz for Ap;; using the sum rule as a
constraint.

» Extract o from the Kubo formula.

Results are checked by an alternative fit to G;(T, T)/Gﬁ“je(T, T).
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Lattice setup
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Fits and electrical conductivity

26T
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Results at m,; ~ 270 MeV,
T/Tc~12;

Lattice: 128 / 16 x 64°

Fit to 7 > b:

Very good agreement with data!

Electrical conductivity:

g
o = 040(12)
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Electrical conductivity accross the transition

Next step:
Study the temperature dependence of the conductivity.

Problems:

» No T = 0 correlators available.
= Cannot use the reconstructed correlator and the sum rule!

> l.e. the crucial ingredient for the succesfull fits at T/T¢ ~ 1.2 is missing
at the moment.

Options:

» Measure T = 0 correlators.
(along with T = 0 subtractions for the temp. scan)

> Find some other option to constrain the fits.

Work in progress ...
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Perspectives

> In the next couple of months we plan to accomplish the simulations at
m,; = 200 MeV.

» Plan to add additional volumes.
(This has been started to some extend)

> Long term list:

> Simulate at lighter pion masses.
» Calculate T = 0 subtractions.

= Accomplish renormalisation.
» Finaly: Perform a scaling analysis!

> We also calculated the electrical conductivity at T/T¢ ~ 1.2

Plan to measure the conductivity accross the temperature scan and to
study the fate of the p meson.
(Also here the T = 0 subtractions are crucial!)
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Thank you for your attention!
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Backup slides:
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Ansatz for the spectral function

Api? = prag(w, T) = pe(w, T) + Ape(w, T)
2¢s & tanh®(w/T
po(w, T) = ; o tanh (] T)
w—ms)" + g3
Apr(w, T) = (w, T) — pr(w,0) with (w, T)= i.l-io.)2tanh <i>
PFW, PF\W, PFW, PF\W, o 4T
dew
pra(w, T) = @/gr+1
4cT tanh(w/T)
pra(w, T) T w/el 1

Fit parameters: c, g, cs
Fixed by T = 0 correlator: mg

gg/ T varied between 0.1 — 1.0 (gg = 25 — 250 MeV) < no significant

dependence
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