QCD thermodynamics with O(a) improved Wilson fermions at $N_f = 2$

Bastian Brandt

University of Regensburg

In collaboration with Anthony Francis, Harvey Meyer, Hartmut Wittig (Mainz), and Owe Philipsen (Frankfurt)

05.08.2013

References: chiral transition: 1008.2143 / 1011.6172 / 1210.6972 plasma properties: 1212.4200 / 1302.0675

Contents

- 1. Introduction
 - The chiral limit at $N_f = 2$
 - Plasma properties near the phase transition
- 2. Setup
- 3. Status of temperature scans
- 4. The electrical conductivity
- 5. Perspectives

1. Introduction

- The chiral limit at $N_f = 2$
- Plasma properties near the phase transition

Directly accessible: Zero density ($\mu = 0$)

Enlarged parameter space relevant for the QCD phase diagram:

[Kanaya, PoS LAT 2010 012]

- The charm quark is to heavy to influence the transition properties. (might affect plasma properties above T_c)
- Isospin breaking effects probably also not to important.

$N_f = 2$ transition and tricritical point

Two possible scenarios:

We know it is a true phase transition.

But it can be of first or second order!

[Pisarski, Wilczek, PRD 29, 338 (1984)] [Butti *et al*, JHEP 0308, 029 (2003)]

Assessing the two scenarios - Scaling

- Cannot simulate directly in (or very close to) the chiral limit.
- Only possibility: Simulate at larger quark masses in the crossover region and look for critical scaling in the approach to the chiral limit at constant m_s.
- What type of scaling can be expected in the two cases?
 - O(4): usual O(4) scaling
 Order parameter: Chiral condensate
 - First order: Z(2) scaling (or some remnant of first order?)
 Order parameter: ???
- How close to m_{ud} = 0 is necessary? (Probably even below physical m_{ud})
- Simulations at small quark masses are expensive! (especially for non-staggered fermion actions)
- There is a number of studies but no conclusive result! (contradicting results for staggered; no reliable chiral extrapolation for other fermion discretisations)

Assessing the two scenarios – $U_A(1)$ symmetry

Of particular importance:

Strength of the anomalous breaking of the $U_A(1)$ symmetry:

[Pisarki, Wilczek, PRD 29, 338 (1984)]

[Butti et al, JHEP 0308, 029 (2003)]

If the breaking is strong:

Transition: Second order $SU(2) \times SU(2) \simeq O(4)$ universality

If the breaking is weak, or the symmetry restored: Transition: First order (or second order ≇ O(4)).

Possibilities for looking at the strength of the breaking:

- Look at suszeptibilities.
- Look at degeneracies of correlation functions and screening masses in pseudoscalar (P) and scalar channels (S).
- \Rightarrow Chiral extrapolation is mandatory!

Assessing the two scenarios - Our choice

Simulate at $N_f = 2$:

- Simulations are less expensive than for $N_f = 2 + 1$.
- Can use Wilson fermions on large lattices using the available fast algorithms and the T = 0 input from CLS.
- Also look at screening masses and $U_A(1)$ symmetry restoration.

Plasma properties near the phase transition

For hydrodynamic calculations and to explain phenomena observed in experiment:

Extract transport coefficients and particle production rates from the lattice!

[see previous talk by Harvey]

Our study yields large lattices around T_C .

 \Rightarrow Can be used to study plasma properties!

Measurement of the electrical conductivity:

► Have extracted the electrical conductivity with dynamical fermions at $T \approx 250 \text{ MeV}$ (\Rightarrow See end of my talk!).

[BB et al, JHEP 1303, 100 (2013)]

Crucial for this was the use of the reconstructed correlator in combination with a related sum rule.

```
[Bernecker, Meyer, EPJ A47, 148 (2011)]
```

• We are aiming to extend this analysis over the full scan at $m_{\pi} \approx 290$ MeV.

Other plasma properties will be studied in the future ...

2. Setup

Action and scale setting

```
Action: Non-perturbatively \mathcal{O}(a)-improved Wilson fermions
        Wilson plaquette gauge action
Algorithms: deflation accelerated DD-HMC
                                                [Lüscher (2004-2005), e.g. CPC 165, 199 (2005)]
             MP-HMC with DFI -SAP-GCR solver
                                                [Marinkovic, Schäfer PoS LAT 2010, 031 (2010)]
\Rightarrow Good scaling properties with volume and quark masses!
Scale setting: r_0 in the chiral limit as determined by CLS
                                                         [Fritzsch et al, NPB 865, 397 (2012)]
Mass scale: PCAC mass converted to \overline{MS} scheme
Renormalisation: Interpolation of ALPHA results as used within CLS.
```

Temperature scan setup

Basic strategy:

- Use $N_t = 16$ for all scans.
- Use 3 different volumes: 32³, 48³ and 64³. (enables a finite volume scaling study; control FS effects)
- At least 3 different pion masses below $m_{\pi} \leq 300$ MeV. (ideally even below the physical point)
- We scan in β :
 - First attempts: keep κ fixed
 ⇒ Quark mass changes along the scan.
 (is problematic for Wilson fermions at small quark masses)
 Now: Keep renormalised quark mass fixed!
 ⇒ Line of constant physics (LCP)
 - (conceptually much cleaner)

Observables

Chiral transition:

- Chiral condensate $\langle \bar{\psi}\psi \rangle$; (subtracted and bare) Order parameter of the transition in the chiral limit. (Problematic due to additive and multiplicative renormalisation)
- Screening masses in various channels; Sensitive to chiral symmetry restoration pattern.

Deconfinement:

- Polyakov loop L; (APE smeared and unsmeared)
 Order parameter of the transition in the pure gauge limit.
- Quark number suszeptibility χ_q;
 Measures the net number of quarks.

Note: At the moment all quantities are not renormalised properly! (no T = 0 subtractions)

3. Status of temperature scans

Overview over simulation points

► LCP at $m_{\pi} \approx 290$ MeV not perfect for T > 210 MeV. (recent updates on T = 0 results)

First LCP at $m_{\pi} \approx 290$ MeV

• C1: 16×32^3 Lattice LCP at $m_{\pi} \approx 290$ MeV $(m_{ud} \approx 14.5)$

0.07

► Statistic: ~12000 MD-units

►
$$\tau_{\text{int}}(U_P) \sim 14 \text{ MDU}$$

 $\Rightarrow \sim 900 - 1000 \text{ unc. meas.}$

First LCP at $m_\pi \approx 290$ MeV

- C1: 16×32^3 Lattice LCP at $m_{\pi} \approx 290$ MeV $(m_{ud} \approx 14.5)$
- Statistic: ~300 configurations separated by 40 MDUs

LCP at $m_\pi pprox$ 200 MeV

- ► D1: 16×32^3 Lattice LCP at $m_{\pi} \approx 200$ MeV $(m_{ud} \approx 7.2)$
- Statistic: ~7000 MD-units
- τ_{int}(U_P) ~ 7 MDU (here MP-HMC - reduced τ_{int})

LCP at $m_\pi pprox 200 \; { m MeV}$

• C1: 16×32^3 Lattice LCP at $m_{\pi} \approx 200$ MeV $(m_{ud} \approx 7.2)$

 $\Delta M/(2\pi T)$

 Statistic: ~300 configurations separated by 20 MDUs

0.2

-0.2 -0.4 -0.6

-0.8

 T/T_C

Transition temperatures and scaling

QCD thermodynamics with O(a) improved Wilson fermions at $N_f = 2$

 \Box The electrical conductivity

4. The electrical conductivity

QCD thermodynamics with O(a) improved Wilson fermions at $N_f = 2$ \Box The electrical conductivity

Vector correlator and electrical conductivity

[BB et al, JHEP 1303, 100 (2013)]

Kubo formula:
$$\frac{\sigma(T)}{T} = \frac{C_{\rm em}}{6} \lim_{\omega \to 0} \frac{\rho_{ii}(\omega, T)}{\omega T}$$

 $ho_{\mu
u}(\omega, T)$: Spectral function associated with $G_{\mu
u}(\tau, T)$ via

$$G_{\mu\nu}(\tau,T) = \int_0^\infty \frac{d\omega}{2\pi} \ \rho_{\mu\nu}(\omega,T) \ \frac{\cosh\left[\omega\left(1/(2T)-\tau\right)\right]}{\sinh\left(\omega/2T\right)}$$

Strategy:

- Extract $G_{\mu\nu}(\tau, T)$ from the lattice!
- Use the reconstructed correlator $G_{\mu\nu}^{\rm rec}(\tau, T) = \sum_m G_{\mu\nu}(|\tau + m/T|, T = 0)$
- and the sum rule $\int_{-\infty}^{\infty} \frac{d\omega}{\omega} \left[\rho_{ii}(\omega, T) \rho_{ii}(\omega, 0)\right] = 0$.
- Fit the difference ΔG_{ii}(τ, T) = G_{ii}(τ, T) − G^{rec}_i(τ, T) to a phenomenologically motivated ansatz for Δρ_{ii} using the sum rule as a constraint.
- Extract σ from the Kubo formula.

Results are checked by an alternative fit to $G_{ii}(\tau, T)/G_{\mu\mu}^{\text{free}}(\tau, T)$.

QCD thermodynamics with O(a) improved Wilson fermions at $N_f = 2$ \Box The electrical conductivity

Lattice setup

Lattices: 16×64^3 and 128×64^3 (T = 0)

Fits and electrical conductivity

- Results at $m_{\pi} \approx 270$ MeV, $T/T_C \approx 1.2$; Lattice: 128 / 16 × 64³
- ► Fit to τ ≥ 5: Very good agreement with data!
- Electrical conductivity: $\frac{\sigma}{C_{\text{em}} T} = 0.40(12)$

Electrical conductivity accross the transition

Next step:

Study the temperature dependence of the conductivity.

Problems:

- No T = 0 correlators available.
 - \Rightarrow Cannot use the reconstructed correlator and the sum rule!
- ▶ I.e. the crucial ingredient for the succesfull fits at $T/T_C \approx 1.2$ is missing at the moment.

Options:

- Measure T = 0 correlators. (along with T = 0 subtractions for the temp. scan)
- Find some other option to constrain the fits.

Work in progress ...

Perspectives

- In the next couple of months we plan to accomplish the simulations at $m_{\pi} = 200$ MeV.
- Plan to add additional volumes. (This has been started to some extend)
- Long term list:
 - Simulate at lighter pion masses.
 - Calculate T = 0 subtractions.
 - $\Rightarrow \ \ {\rm Accomplish \ renormalisation}.$
 - Finaly: Perform a scaling analysis!
- \blacktriangleright We also calculated the electrical conductivity at $T/T_{C}\approx 1.2$
- Plan to measure the conductivity accross the temperature scan and to study the fate of the ρ meson.
 (Also here the T = 0 subtractions are crucial!)

QCD thermodynamics with O(a) improved Wilson fermions at $N_f = 2$

Thank you for your attention!

QCD thermodynamics with O(a) improved Wilson fermions at ${\it N_f}$ = 2

Backup slides:

Ansatz for the spectral function

$$\begin{split} \Delta \rho_{ii}^{1,2} &= \rho_{T;1,2}(\omega,T) - \rho_B(\omega,T) + \Delta \rho_F(\omega,T) \\ \rho_B(\omega,T) &= \frac{2c_B g_B \tanh^3(\omega/T)}{4(\omega - m_B)^2 + g_B^2} \\ \Delta \rho_F(\omega,T) &= \rho_F(\omega,T) - \rho_F(\omega,0) \quad \text{with} \quad \rho_F(\omega,T) = \frac{3}{2\pi} \kappa \omega^2 \tanh\left(\frac{\omega}{4T}\right) \\ \rho_{T;1}(\omega,T) &= \frac{4c\omega}{(\omega/g)^2 + 1} \\ \rho_{T;2}(\omega,T) &= \frac{4cT \tanh(\omega/T)}{(\omega/g)^2 + 1} \end{split}$$

Fit parameters: c, g, c_B Fixed by T = 0 correlator: m_B g_B/T varied between 0.1 - 1.0 ($g_B = 25 - 250$ MeV) \Leftarrow no significant dependence