Scale hierarchy in high-temperature QCD

Oscar Åkerlund (ETH Zurich) with Philippe de Forcrand (ETH & CERN) XQCD 2013, Bern August 5, 2013

High-temperature QCD

QCD is asymptotically free

- High temperature: $g(T) \rightarrow 0$, deconfinement for $T > T_c$
- Perturbative treatment OK for "sufficiently high" T

Dimensional reduction: $4d \rightarrow 3d$

- Fourier decomposition: $\tilde{\phi}_n(x) = \int_0^{1/T} dt \, e^{i2\pi(n+q)t} \phi(x,t) \, q = \{0, 1/2\}$
- Tower of states: $E_n^2 = |\vec{k}|^2 + (2\pi T(n+q))^2 + m^2 = |\vec{k}|^2 + (m_{\text{eff}}^{3d})^2$

■ $|\vec{k}| \ll T \rightarrow$ static (*n* = 0) modes for bosons, fermions decouple

Same for gauge fields

• Effective d.o.f: $\bar{A}_i \equiv A_{i,n=0}$ and $\bar{A}_0 \equiv A_{0,n=0}$ or Polyakov loop L

$$\bar{A}_0 \equiv A_{0,n=0}(\vec{x}) = \int_0^{1/T} \mathrm{d}t \, A_0^a(\vec{x},t) \tau_a$$

Effective action: $S^{4d} = \int d^3x dt \operatorname{Tr} F_{\mu\nu}^2 \rightarrow S_{\text{eff}}^{3d} = \int d^3x \left[\operatorname{Tr} \overline{F}_{ij}^2 + m^2 \overline{A}_0^2 + (D_i \overline{A}_0)^2 + \lambda \overline{A}_0^4 + \cdots \right]$ i.e. 3d Yang-Mills + adjoint Higgs

3d coupling by integrating our non-static modes. Tree level: $(g_{eff}^{3d})^2 = g(T)T$.

Note: 3*d* theory is confining, i.e. **non-perturbative** in IR (spatial string tension, glueball....)

Linde: non-perturbative scale is $g^2(T)T$

Oscar Åkerlund and Philppe de Forcrand High-temperature QCD

Debye screening

• QED: e^+e^- thermal pair creation screens static charges

 $+\cdots$

- Screening: $m_E^2 = -\Pi^{00}(k_0 = 0, \vec{k} \to \vec{0}), \quad m_E = \frac{eT}{\sqrt{3}} (1 + \mathcal{O}(e^2))$
- Coulomb potential $\propto r^{-1}$ at $T = 0 \rightarrow$ Yukawa $\propto \frac{\exp(-m_E r)}{r}$ at T > 0

Debye screening: QCD

- QCD: Tr(Polyakov loop) is color singlet, so at least two gluons emitted
- To lowest order, similar to QED:

$$m_E = gT\sqrt{\frac{N_c}{3} + \frac{N_f}{6}}$$

Higher order: 4-gluon vertex couples to 3d glueball:

Recap: 3 scales in high-T QCD

- "hard" scale $2\pi T$ non-static modes
- "soft" scale g(T)T Debye mass ("electric")
- "ultrasoft" scale $g^2(T)T$ 3d glueball mass ("magnetic")

Hierarchy as $T \to \infty$, $g(T) \to 0$

• integrate out "hard" scale \rightarrow

effective theory EQCD (electric) 3d Yang-Mills + adjoint Higgs

- integrate out "soft" scale \rightarrow
- effective theory MQCD (magnetic) 3*d* Yang-Mills

..., Kajantie et al,

How high should T be?

$g^2 T \ll g T \ll 2\pi T$

Look for three scales in decay rate of correlator of Polyakov loops

How high should T be?

$g^2 T \ll g T \ll 2\pi T$

Look for three scales in decay rate of correlator of Polyakov loops

Symmetries

- Reversal of Euclidean time "R": $t \to -t$, $A_0 \to -A_0$, $\text{Tr}L \to \text{Tr}L^{\dagger}$
- MQCD (3*d* effective theory, no A_0) is "R"-even \rightarrow scale g^2T in "R"-even observables only

..., Arnold and Yaffe,

Expectations

- Polyakov loop: $L = \exp\left(i\bar{A}_0\right)_{\bar{A}_0 \ll 1} \approx 1 + i\bar{A}_0 \frac{\bar{A}_0^2}{2} \frac{i\bar{A}_0^3}{6} + \cdots$ with $\mathrm{Tr}\bar{A}_0 = 0$
- At $\mathcal{O}(gT)$: TrRe $L \sim \bar{A}_0^2 \rightarrow \text{mass } \frac{2m_E}{\text{TrIm}L \sim \bar{A}_0^3 \rightarrow \text{mass } \frac{3m_E}{2m_E}$

Subtlety

• Without smearing, TrIm*L* is "R"-odd (changes sign under $t \rightarrow -t$)

No longer true after smearing: changes sign under $(t \rightarrow -t, x \rightarrow -x, y \rightarrow -y)$ together TrIm*L* is neither "R"-odd nor "R"-even Projects also onto lightest state ("R"-even glueball)

g chosen suitably small (0.2 – 0.6) for a clear scale hierarchy But $T \sim 10^9 - 10^{69} T_c!!!$

- ReL $\rightarrow m_{\text{eff}} \in \{\sim 2\pi T, 2m_E + \text{corr.}, m_G(0^+)\}$
- Crosscheck $m_G(0^+)$ by measuring correlator of ReTr Plaq_{xy} ~ F_{xy}^2

High-temperature QCD

Im $L \rightarrow m_{\text{eff}} \in \{\sim 2\pi T, 3m_E + \text{corr.}\}$ (and m_G when smeared)

Masses versus β:

- check $m_E \sim gT, m_G \sim g^2 T$

- fit non-perturbative corrections to m_E finite-size effects on m_G

+ discretization errors $\mathcal{O}(1/\beta)$

• Continuum limit: compare $(N_t = 2, \beta)$ and $(N_t = 3, \beta + \Delta\beta)$

Nt = 3

Small spectrum corrections, consistent with $1/N_t^2$

$$3m_E \rightarrow 3m_{E,\text{cont}} \times \{1.31(4)[N_t = 2], 1.09(14)[N_t = 3]\}$$

$$2m_E \rightarrow 2m_{E,\text{cont}} \times \{1.34(3)[N_t = 2], 1.27(1)[N_t = 3]\}$$

Oscar Åkerlund and Philppe de Forcrand High-temperature QCD

zT

ß

3m_⊭

ReL(0) ReL(zT)>

2π

TM ...

Summary

- ImL: $\frac{M\left(\mathrm{Tr}\left[A_{0}^{3}\right]\right)}{T} = 3\frac{m_{E}}{T} + \frac{g^{2}N_{c}}{4\pi}\left(b_{3}\log\frac{m_{E}}{g^{2}T} + c_{3}\right), \ b_{3}, c_{3} \text{ non-perturbative}$
- **Re***L*: $\frac{M(\operatorname{Tr}[A_0^2])}{T} = 2\frac{m_E}{T} + \frac{g^2 N_c}{4\pi} \left(\log \frac{m_E}{g^2 T} + c_2 \right), \ c_2 \text{ non-perturbative and } m_G(0^+)$
- $\frac{M}{T}\gtrsim 1$: No clear scale hierarchy even at $T\sim 10^{30} T_c$

Lesson: success of effective 3d description at $T \gtrsim 3 - 10T_c$ does not necessarily imply scale hierarchy

Oscar Åkerlund and Philppe de Forcrand High-temperature QCD

Compare with 3d simulations of EQCD:

hep-ph/0004060 (Hart et al)

The spectrum of screening masses in various quantum number channels at $N_f = 0, T = 2T_c$ (left), $N_f = 0, T \sim 10^{11}T_c$ (right). Filled symbols denote 3*d* glueball states, which have become the lightest excitations at $T \sim 10^{11}T_c$

Hierarchy $\frac{2\pi T \gg m_E \gg m_G}{\text{Inverted into } m_E \sim 2\pi T \lesssim m_G}$ at $T \sim 10^{11} T_c$

Supplement with center degrees of freedom: 0801.1566 (Kurkela et al)

Oscar Åkerlund and Philppe de Forcrand

High-temperature QCD

Mystery?

- Measure mass from Im*L* ImPlaq_{xy} \sim ReTr [$A_0 F_{xy}$] $\sim m_E$
- Expect $\frac{M(\text{Tr}[A_0F_{xy}])}{T} = \frac{m_E}{T} + \frac{g^2 N_c}{4\pi} \left(\log \frac{m_E}{g^2 T} + c_1\right)$

Too heavy?

"*m_E*" approaches " $2m_E$ "

as $\beta \to \infty$??

v

Non-perturbative $\mathcal{O}(g^2T)$: Linde problem

Consider perturbative expansion of free energy (pressure)

(l+1) loops, 2l vertices, 3l propagators: $g^{2l} \left(T \int d^3k \right)^{l+1} k^{2l} \left(k^2 + m^2\right)^{-3l}$

 $m = 0 \rightarrow \int dk \, k^{3l+2-4l}$ IR-divergent if $l \ge 3$ ie. non-perturbative at $\mathcal{O}(g^6)$

Divergence cured by non-perturbative mass $m_G \sim O(g^2 T)$ mass gap of 3*d* theory (3*d* glueball)

Oscar Åkerlund and Philppe de Forcrand High-temperature QCD

Oscar Åkerlund and Philppe de Forcrand High-temperature QCD