Investigation of the axial anomaly in high temperature QCD on the lattice

Viktor Dick¹ Frithjof Karsch^{1,2} Edwin Laermann¹ Swagato Mukherjee² Sayantan Sharma¹ ¹Fakultät für Physik, Universität Bielefeld, Germany ²Brookhaven National Laboratory, Upton, USA.

Introduction

- Renormalization Group studies[1,2] on models with the same symmetries as QCD suggest that the order of the chiral phase transition for $N_f = 2$ QCD at zero baryon density depends on the magnitude of the axial anomaly, $U_A(1)$.
- If $U_A(1)$ is not restored at the chiral phase transition \Rightarrow second order transition.
- Existence of critical point expected.
- For 2 + 1 flavour QCD, the light quark masses $m_l << \Lambda_{QCD} \Rightarrow$ chiral symmetry for the light quark sector still relevant.
- We investigate in this work, the role of the $U_A(1)$ for physical quark masses for $N_f = 2 + 1$ QCD using non-perturbative lattice techniques, near and above the chiral cross-over temperature T_c .
- ▶ In particular, it would give us an insight whether the critical end-point exists.

The Set-up

- Highly Improved Staggered Quark(HISQ) discretization is used quite extensively for QCD thermodynamics.
- ► Has least taste symmetry violations on the lattice.
- Continuum extrapolated results for T_c , χ_{2B} are known \Rightarrow in excellent agreement with other improved staggered operators like ASQTAD and stout smeared.

Profile of the zero modes at 1.5 T_c

The zero modes are localized in space with a well defined peak.

These are localized in the temporal direction as well.

▶ We use the overlap fermion operator[3] to study the underlying topology of the HISQ configurations by looking at its eigenvalue distribution.

Configurations used

- We used the $32^3 \times 8$ HISQ configurations generated by the Bielefeld-BNL collaboration. • Volume: $m_{\pi}L > 3$.
- $ightarrow N_f = 2 + 1$: strange quark mass is at physical value, $m_s/m_l = 20 \rightarrow$ pion mass = 160 MeV.

Implementing the Overlap operator

 $D_{ov} = M \left[1 + \gamma_5 sgn(\gamma_5 D_W)\right].$

- Lowest 20 eigenvalues of $\gamma_5 D_W$ computed with $\epsilon^2 < 10^{-16}$.
- ► For these lowest modes sign function was computed explicitly.
- ► For the higher modes, sign function approximated as a Zolotarev Rational Polynomial with 15 terms. • The sign function is computed as precise as 10^{-10} .

Eigenvalues of the overlap operator on HISQ sea

Computing Eigenvalues

The eigenvalues computed using Ritz-minimization with

Radii of these profile is smaller than box size and of the order of 1/3 fm \Rightarrow More in agreement with dilute instanton gas model.

A closer look at the near-zero modes at 1.5 T_c

- ▶ We compare the presence of near-zero modes with the expectation from dilute instanton gas model.
- If n = number of instantons+anti-instantons interacting weakly \Rightarrow they should follow Poisson distribution.

$$P(n,\langle n
angle) = \langle n
angle^n \mathrm{e}^{-\langle \mathrm{n}
angle}/\mathrm{n}!$$

▶ This would result in $\langle n \rangle = \langle n^2 \rangle$. At 1.5 T_c , for Im $\lambda a < 0.036$, indeed $\langle n \rangle = 4 = \langle n^2 \rangle$.

Kalkreuter-Simma algorithm[4]. • Convergence criterion : $\epsilon^2 < 10^{-8}$.

Eigenvalue statistics

T		#configs	# eigenvalues/config
1.04	T_c	100	100
1.23	T_c	100	50
1.50	T_c	100	50

The computations were done on the GPU cluster at the Bielefeld University.

Why the overlap operator? Overlap operator satifies an index theorem on the lattice \Rightarrow zero modes of the overlap operator related to the non-trivial topology of the gauge fields[5].

Our idea to use overlap valence quarks is to get a clear separation between the zero and near-zero modes.

Our observations

Significant fraction of the configurations have true zero-modes.

Such near-zero mode peak observed in the eigenvalue spectrum of 2 + 1 flavour dynamical domain wall fermions above T_c , as well[7].

Summary

► The 2+1 flavour HISQ configurations on a large lattice volume used extensively for QCD thermodynamics, show a significant presence of zero modes even beyond T_c .

► The fermion zero modes are localized both in the spatial and 'temporal' directions.

• Even more important are the presence of near-zero modes at 1.5 T_c .

• We do not observe a gap in the low-lying eigenvalue spectrum even at 1.5 $T_c \Rightarrow U_A(1)$ is not restored.

Cross-checked by comparing the topological charge measured from the *FF* using HYP smearing on the same configurations[6].

Important

▶ Clear presence of a finite density of near-zero modes even at 1.5 T_c . ▶ No signal of a gap opening up $\Rightarrow U_A(1)$ is not restored.

► The presence of near-zero modes are consistent with the expectation from the dilute instanton gas model.

References

1. R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338 (1984). 2. A. Butti, A. Pelissetto and E. Vicari, JHEP 0308, 029 (2003). 3. R. Narayanan and H. Neuberger, Phys. Rev. Lett. 71, 3251 (1993); H. Neuberger, Phys. Lett. B 417, 141 (1998). 4. T. Kalkreuter and H. Simma, Comput. Phys. Commun. 93, 33 (1996). 5. P. Hasenfratz, V. Laliena and F. Niedermeyer, Phys. Lett. B 427, 125 (1998). 6. H. Ohno, U. M. Heller, F. Karsch and S. Mukherjee, PoS LATTICE 2012, 095 (2012)[arXiv:1211.2591[hep-lat]]. 7. A. Bazavov, T. Bhattacharya, M. I. Buchoff, M. Cheng, N. H. Christ, H.-T. Ding et al., Phys. Rev. D 86 (2012) 094503 [arXiv:1205.3535 [hep-lat]]; RBC-LLNL collaboration, 2013, in preparation.

Workshop on QCD under extreme conditions, XQCD 2013, University of Bern