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Introduction

◮ Renormalization Group studies[1,2] on models with the same symmetries as QCD suggest that the
order of the chiral phase transition for Nf = 2 QCD at zero baryon density depends on the magnitude
of the axial anomaly, UA(1).

◮ If UA(1) is not restored at the chiral phase transition ⇒ second order transition.

◮ Existence of critical point expected.

◮ For 2 + 1 flavour QCD, the light quark masses ml << ΛQCD ⇒ chiral symmetry for the light quark
sector still relevant.

◮We investigate in this work, the role of the UA(1) for physical quark masses for Nf = 2 + 1 QCD using
non-perturbative lattice techniques, near and above the chiral cross-over temperature Tc.

◮ In particular, it would give us an insight whether the critical end-point exists.

The Set-up

◮Highly Improved Staggered Quark(HISQ) discretization is used quite extensively for QCD
thermodynamics.

◮Has least taste symmetry violations on the lattice.

◮ Continuum extrapolated results for Tc, χ2B are known ⇒ in excellent agreement with other improved
staggered operators like ASQTAD and stout smeared.

◮We use the overlap fermion operator[3] to study the underlying topology of the HISQ configurations by
looking at its eigenvalue distribution.

Configurations used

◮We used the 323 × 8 HISQ configurations generated by the Bielefeld-BNL collaboration.

◮ Volume: mπL > 3.

◮Nf = 2 + 1: strange quark mass is at physical value, ms/ml = 20 → pion mass = 160 MeV.

Implementing the Overlap operator

Dov = M [1 + γ5sgn(γ5DW )] .

◮ Lowest 20 eigenvalues of γ5DW computed with ǫ2 < 10−16.

◮ For these lowest modes sign function was computed explicitly.

◮ For the higher modes, sign function approximated as a Zolotarev Rational Polynomial with 15 terms.

◮ The sign function is computed as precise as 10−10.

Eigenvalues of the overlap operator on HISQ sea

Computing Eigenvalues

◮ The eigenvalues computed using
Ritz-minimization with
Kalkreuter-Simma algorithm[4].

◮ Convergence criterion : ǫ2 < 10−8.

◮ Eigenvalue statistics
T #configs # eigenvalues/config

1.04 Tc 100 100
1.23 Tc 100 50
1.50 Tc 100 50

◮◮ The computations were done on the
GPU cluster at the Bielefeld University.

Why the overlap operator?

◮Overlap operator satifies an index
theorem on the lattice ⇒ zero modes
of the overlap operator related to the
non-trivial topology of the gauge
fields[5].

◮◮Our idea to use overlap valence quarks
is to get a clear separation between the
zero and near-zero modes.

Our observations

◮ Significant fraction of the
configurations have true zero-modes.

◮◮ Cross-checked by comparing the
topological charge measured from the
F F̃ using HYP smearing on the same
configurations[6].
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Important

◮ Clear presence of a finite density of near-zero modes even at 1.5 Tc.

◮No signal of a gap opening up ⇒ UA(1) is not restored.

Profile of the zero modes at 1.5 Tc

The zero modes are localized in space with a well defined peak.
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These are localized in the temporal direction as well.
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Radii of these profile is smaller than box size and of the order of 1/3 fm
⇒ More in agreement with dilute instanton gas model.

A closer look at the near-zero modes at 1.5 Tc

◮We compare the presence of near-zero modes with the expectation from dilute instanton gas model.

◮◮ If n = number of instantons+anti-instantons interacting weakly ⇒ they should follow Poisson
distribution,

P(n, 〈n〉) = 〈n〉ne−〈n〉/n!

◮This would result in 〈n〉 = 〈n2〉.

◮ At 1.5 Tc, for Imλa < 0.036, indeed 〈n〉 = 4 = 〈n2〉.
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◮ Such near-zero mode peak observed in the eigenvalue spectrum of 2 + 1 flavour dynamical domain
wall fermions above Tc, as well[7].

Summary

◮The 2+1 flavour HISQ configurations on a large lattice volume used extensively for QCD
thermodynamics, show a significant presence of zero modes even beyond Tc.

◮◮The fermion zero modes are localized both in the spatial and ’temporal’ directions.

◮◮ Even more important are the presence of near-zero modes at 1.5 Tc.

◮◮We do not observe a gap in the low-lying eigenvalue spectrum even at 1.5 Tc ⇒ UA(1) is not restored.

◮◮The presence of near-zero modes are consistent with the expectation from the dilute instanton gas
model.
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