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Abstract

We study two-color QCD with two flavors of Wilson fermion as a function of quark chemical po-
tential and temperature. We find evidence of three distinct phases at low temperature, namely a
vacuum/hadronic phase, a superfluid phase, where the quark number density and diquark condensate are
both very well described by a Fermi sphere of nearly-free quarks disrupted by a BCS condensate, and
a deconfined phase. We present our recent results supporting this picture, focusing on the equation of state.

This presentation is based on: Phys. Rev. D 87 (2013) 034507.

Introduction

• Intensive efforts are underway to unveil the phase structure of strongly interacting matter at high density
and low temperature.

•A wealth of information exists regarding possible phases and their properties in various models but no
reliable, quantitative results are available yet.

•Many questions could in principle be answered by lattice QCD simulations, but unfortunately their
practical feasibility is limited, due to the existence of the so called “sign problem”.

• Lattice simulations may still be used to study QCD-like theories without a sign problem providing
first-principles, nonperturbative results: this is the main aim of the present study.

•We focus on QCD with gauge group SU(2) (two-color QCD or QC2D); it is of particular interest because
it shares most of the salient features of real QCD (eg, confinement, dynamical chiral symmetry breaking
and long-range interactions). It differs from QCD in that the baryons of the theory are bosons, and the
lightest baryon is a pseudo-Goldstone boson, degenerate with the pion.

•We study QC2D with conventional Wilson action for the gauge fields and two flavours of Wilson fermion
plus a diquark source term (µ baryon chemical potential, M (µ) Wilson fermion matrix):

Sf = ψ̄1M (µ)ψ1 + ψ̄2M (µ)ψ2 + J
{

ψtr2 (Cγ5)τ2ψ1 − ψ̄1(Cγ5)τ2ψ̄
tr
2

}

. (1)

• It is convenient to introduce the change of variables: φ̄ = −ψtr2 Cτ2 , φ = C−1τ2ψ̄
tr
2 and ψ = ψ1,

ψ̄ = ψ̄1. Using it, we can rewrite Sf as:

Sf = (ψ̄φ̄)

(

M (µ) Jγ5
−J̄γ5 M (−µ)

)(

ψ
φ

)

≡ Ψ̄MΨ . (2)

Expectations

At low temperature, increasing µ, we expect to see mainly three regimes:

• µ < µo: vacuum.

• µ & µo: dilute tightly-bound quarks (weakly interacting baryons) → BEC.

• µ≫ µo: weakly interacting quarks Cooper pairs → BCS.

From chiral perturbation theory (mπ ≪ mρ) we know that when µ ≥ µo ≡
1
2mπ:

• nq > 0: non zero baryon density.

• 〈qq〉 6= 0: a gauge invariant superfluid order parameter (spontaneous breaking of U(1) baryon number).

Order Parameters and Observables

• Polyakov Loop: L = 〈Tr
∏Nτ
n4=1

U4(n, n4)〉 (confinement/deconfinement).

•Diquark condensate: 〈qq〉 = 1
V
∂ lnZ
∂j (superfluidity).

•Quark number density nq.

•Quark number susceptibility:

χq = ∂nq/∂µ = T
Vs

{

−〈
[

−Ψ̄∂M∂µ Ψ
]

〉2 + 〈
[

−Ψ̄∂M∂µ Ψ
]2
〉 + 〈

[

−Ψ̄∂
2M
∂µ2

Ψ
]

〉

}

.

• Pressure p =
∫ µ
µo
nqdµ. We use three schemes to present our results:

(

p
pSB

)

0
= (pcontSB (µ))−1

∫ µ
µo
nq(µ

′)dµ′ ,
(

p
pSB

)

I
= (platSB(µ))

−1
∫ µ
µo
nq(µ

′)dµ′

(

p
pSB

)

II
= (pcontSB (µ))−1

∫ µ
µo

ncontSB

nlatSB
(µ′)nq(µ

′)dµ′ , where pcontSB =
NfNc

12π2

(

µ4 + 2π2µ2T 2 + 7π4

15 T
4
)

.

• Energy density ε(T ) = nqµ− 1
V

∂Z
∂T−1

∣

∣

∣

∣

V
and trace anomaly Tµµ ≡ ε− 3p = T

V

〈

as
∂S
∂as

∣

∣

ξ

〉

:

these require knowledge of Karsch coefficients d(β, κ, γg,q)/dξ|as and beta functions d(β, κ)/das|ξ=1
which can be determined from anisotropic simulations with ξ = as/at. γg,q are bare gluon and quark
anisotropies.

Results

Parameters of the simulations presented here: β = 1.9, κ = 0.168;
mπ = 0.645(8), mπ/mρ = 0.805(9), a = 0.178(6) fm, Td(µ = 0) = 217(23) MeV.

Correspondence lattice-temperature:
Nτ = 8 → 132MeV, Nτ = 12 → 88MeV, Nτ = 16 → 66MeV, Nτ = 24 → 44MeV.

Quark number density nq and quark number susceptibility χq:
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•Roughly constant in the region 0.4 . µa . 0.7, i.e. approximately equal to non interacting fermions;

•The behavior of χ does not signal any abrupt release of new degrees of fredom;

•The different behaviour of the system at Nτ = 8 suggests a different phase.

Pressure for our three schemes:
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•Top, left: j → 0, Nτ = 24;

• Scheme 0: p/pSB substantially exceeds unity at
large µ, i.e. strong UV artefacts;

• Scheme II: presence of a bump due to IR artefacts;

• Scheme I: the coldest lattice has a plateau with
value ≈ 1;

•Clearly, there is a range of µ where p scales as for
free fermions.

Renormalised energy density and trace anomaly:

(Note: in these plots the additive term nqµ, present in the definition of ǫ, is not included)
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• ǫq is independent of the temperature; ǫg different only for the highest temperature;

• ǫq is sensitive to j for low µ; ǫg is independent of j;

• Even if ǫq is negative, the total one is compatible with zero at low µ and positive for higher values;

•Uncertainties in the Karsch coefficient not included: the effect may be of O(100%);

•Negative trace anomaly, nearly vanishing for 0.4 . µa . 0.7.

NEW RESULTS: nq at smaller lattice spacing and smaller pion mass
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• Smaller lattice spacing: β = 2.1, κ = 0.1577, ⇒ mπ/mρ = 0.805(5), amπ = 0.446(3), 0.122(5) fm ;

• Smaller pion mass: β = 1.7, κ = 0.1810, ⇒ mπ/mρ = 0.61(5), amπ = 0.438(15), 0.189(4) fm .

Conclusions/Outlook

We find evidence of three regions at low T:

1. A vacuum/hadronic phase, with 〈qq〉 = 0, 〈L〉 ≈ 0, 〈ψ̄ψ〉 6= 0, nq ≈ 0, at low T and µ . µo = mπ/2;

2. A quarkyonic phase, which is confined (〈L〉 ≈ 0), chirally symmetric and characterised by SB scaling
of bulk thermodynamic quantities and BCS scaling of the diquark condensate;

3. A deconfined quark–gluon plasma phase at high T (and/or large µ).

•We do not see a BEC phase (probably because the large ratio mπ/mρ);

•Currently we are extending our study to smaller lattice spacing and smaller mπ/mρ ratio.


