

Abstract

We study two-color QCD with two flavors of Wilson fermion as a function of quark chemical potential and temperature. We find evidence of three distinct phases at low temperature, namely a vacuum/hadronic phase, a superfluid phase, where the quark number density and diquark condensate are both very well described by a Fermi sphere of nearly-free quarks disrupted by a BCS condensate, and a deconfined phase. We present our recent results supporting this picture, focusing on the equation of state.

This presentation is based on: Phys. Rev. D 87 (2013) 034507.

Quark number density n_q and quark number susceptibility χ_q :

Introduction

- Intensive efforts are underway to unveil the phase structure of strongly interacting matter at high density and low temperature.
- A wealth of information exists regarding possible phases and their properties in various models but no reliable, quantitative results are available yet.
- Many questions could in principle be answered by lattice QCD simulations, but unfortunately their practical feasibility is limited, due to the existence of the so called "sign problem".
- Lattice simulations may still be used to study QCD-like theories without a sign problem providing first-principles, nonperturbative results: this is the main aim of the present study.
- We focus on QCD with gauge group SU(2) (two-color QCD or QC_2D); it is of particular interest because it shares most of the salient features of real QCD (eg, confinement, dynamical chiral symmetry breaking and long-range interactions). It differs from QCD in that the baryons of the theory are bosons, and the lightest baryon is a pseudo-Goldstone boson, degenerate with the pion.
- We study QC_2D with conventional Wilson action for the gauge fields and two flavours of Wilson fermion plus a diquark source term (μ baryon chemical potential, $M(\mu)$ Wilson fermion matrix):

$$S_f = \bar{\psi}_1 M(\mu) \psi_1 + \bar{\psi}_2 M(\mu) \psi_2 + J \left\{ \psi_2^{tr} (C\gamma_5) \tau_2 \psi_1 - \bar{\psi}_1 (C\gamma_5) \tau_2 \bar{\psi}_2^{tr} \right\} .$$
(1)

• It is convenient to introduce the change of variables: $\bar{\phi} = -\psi_2^{tr} C \tau_2$, $\phi = C^{-1} \tau_2 \bar{\psi}_2^{tr}$ and $\psi = \psi_1$, $\bar{\psi} = \bar{\psi}_1$. Using it, we can rewrite S_f as:

$$S_f = (\bar{\psi}\bar{\phi}) \begin{pmatrix} M(\mu) & J\gamma_5 \\ -\bar{J}\gamma_5 & M(-\mu) \end{pmatrix} \begin{pmatrix} \psi \\ \phi \end{pmatrix} \equiv \bar{\Psi}\mathcal{M}\Psi .$$
⁽²⁾

• Roughly constant in the region $0.4 \leq \mu a \leq 0.7$, i.e. approximately equal to non interacting fermions; • The behavior of χ does not signal any abrupt release of new degrees of fredom; • The different behaviour of the system at $N_{\tau} = 8$ suggests a different phase.

Pressure for our three schemes:

• Top, left: $j \to 0, N_{\tau} = 24;$

free fermions.

- Scheme 0: p/p_{SB} substantially exceeds unity at large μ , i.e. strong UV artefacts;
- Scheme II: presence of a bump due to IR artefacts; • Scheme I: the coldest lattice has a plateau with
- value ≈ 1 ; • Clearly, there is a range of μ where p scales as for

Renormalised energy density and trace anomaly: (Note: in these plots the additive term $n_q\mu$, present in the definition of ϵ , is not included)

Expectations

At low temperature, increasing μ , we expect to see mainly three regimes:

• $\mu < \mu_o$: vacuum.

- $\mu \gtrsim \mu_o$: dilute tightly-bound quarks (weakly interacting baryons) \rightarrow BEC.
- $\mu \gg \mu_o$: weakly interacting quarks Cooper pairs \rightarrow BCS.

From chiral perturbation theory $(m_{\pi} \ll m_{\rho})$ we know that when $\mu \geq \mu_o \equiv \frac{1}{2}m_{\pi}$:

• $n_q > 0$: non zero baryon density.

• $\langle qq \rangle \neq 0$: a gauge invariant superfluid order parameter (spontaneous breaking of U(1) baryon number).

Order Parameters and Observables

- Polyakov Loop: $L = \langle \operatorname{Tr} \prod_{n_4=1}^{N_{\tau}} U_4(n, n_4) \rangle$ (confinement/deconfinement).
- Diquark condensate: $\langle qq \rangle = \frac{1}{V} \frac{\partial \ln Z}{\partial i}$ (superfluidity).
- Quark number density n_q .
- Quark number susceptibility:

 $\chi_q = \partial n_q / \partial \mu = \frac{T}{V_s} \left\{ -\langle \left[-\bar{\Psi} \frac{\partial \mathcal{M}}{\partial \mu} \Psi \right] \rangle^2 + \langle \left[-\bar{\Psi} \frac{\partial \mathcal{M}}{\partial \mu} \Psi \right]^2 \rangle + \langle \left[-\bar{\Psi} \frac{\partial^2 \mathcal{M}}{\partial \mu^2} \Psi \right] \rangle \right\} \,.$

- Pressure $p = \int_{\mu_0}^{\mu} n_q d\mu$. We use three schemes to present our results:
- $\begin{pmatrix} \frac{p}{p_{SB}} \end{pmatrix}_0 = (p_{SB}^{\text{cont}}(\mu))^{-1} \int_{\mu_o}^{\mu} n_q(\mu') d\mu' , \qquad \begin{pmatrix} \frac{p}{p_{SB}} \end{pmatrix}_I = (p_{SB}^{\text{lat}}(\mu))^{-1} \int_{\mu_o}^{\mu} n_q(\mu') d\mu' \\ \begin{pmatrix} \frac{p}{p_{SB}} \end{pmatrix}_{II} = (p_{SB}^{\text{cont}}(\mu))^{-1} \int_{\mu_o}^{\mu} \frac{n_{SB}^{\text{cont}}}{n^{\text{lat}}_{SB}}(\mu') n_q(\mu') d\mu' , \qquad \text{where} \qquad p_{SB}^{\text{cont}} = \frac{N_f N_c}{12\pi^2} \left(\mu^4 + 2\pi^2 \mu^2 T^2 + \frac{7\pi^4}{15} T^4 \right).$ • Energy density $\varepsilon(T) = n_q \mu - \frac{1}{V} \frac{\partial Z}{\partial T^{-1}} \Big|_{U}$ and trace anomaly $T_{\mu\mu} \equiv \varepsilon - 3p = \frac{T}{V} \Big\langle a_s \frac{\partial S}{\partial a_s} \Big|_{\xi} \Big\rangle$:

open symbols: j = 0.04; filled symbols: $j \to 0$ quarks: negative numbers;

Top: gluon (shaded symbols, dotted lines) and quark (open symbols) at ja = 0.04. Filled symbols: quark contributions $j \to 0$. Bottom: ja = 0.04 (open symbols, dashed lines) and $j \rightarrow 0$ (filled symbols).

• ϵ_q is independent of the temperature; ϵ_q different only for the highest temperature;

 \square N_{τ}=16

• ϵ_q is sensitive to j for low μ ; ϵ_q is independent of j;

• Even if ϵ_q is negative, the total one is compatible with zero at low μ and positive for higher values;

- Uncertainties in the Karsch coefficient not included: the effect may be of $\mathcal{O}(100\%)$;
- Negative trace anomaly, nearly vanishing for $0.4 \leq \mu a \leq 0.7$.

NEW RESULTS: n_q at smaller lattice spacing and smaller pion mass

• Smaller lattice spacing: $\beta = 2.1, \kappa = 0.1577, \Rightarrow m_{\pi}/m_{\rho} = 0.805(5), am_{\pi} = 0.446(3), 0.122(5)$ fm ; • Smaller pion mass: $\beta = 1.7$, $\kappa = 0.1810$, $\Rightarrow m_{\pi}/m_{\rho} = 0.61(5)$, $am_{\pi} = 0.438(15)$, 0.189(4) fm.

these require knowledge of Karsch coefficients $d(\beta, \kappa, \gamma_{g,q})/d\xi|_{a_s}$ and beta functions $d(\beta, \kappa)/da_s|_{\xi=1}$ which can be determined from anisotropic simulations with $\xi = a_s/a_t$. $\gamma_{g,q}$ are bare gluon and quark anisotropies.

Results

Parameters of the simulations presented here: $\beta = 1.9$, $\kappa = 0.168$; $m_{\pi} = 0.645(8), \ m_{\pi}/m_{\rho} = 0.805(9), \ a = 0.178(6) \ \text{fm}, \ T_d(\mu = 0) = 217(23) \ \text{MeV}.$

Correspondence lattice-temperature: $N_{\tau} = 8 \rightarrow 132 \text{MeV}, N_{\tau} = 12 \rightarrow 88 \text{MeV}, N_{\tau} = 16 \rightarrow 66 \text{MeV}, N_{\tau} = 24 \rightarrow 44 \text{MeV}.$

Conclusions/Outlook

We find evidence of three regions at low T:

1. A vacuum/hadronic phase, with $\langle qq \rangle = 0, \langle L \rangle \approx 0, \langle \bar{\psi}\psi \rangle \neq 0, n_q \approx 0$, at low T and $\mu \lesssim \mu_o = m_{\pi}/2$; 2. A quarkyonic phase, which is confined ($\langle L \rangle \approx 0$), chirally symmetric and characterised by SB scaling of bulk thermodynamic quantities and BCS scaling of the diquark condensate; 3. A deconfined quark–gluon plasma phase at high T (and/or large μ). • We do not see a BEC phase (probably because the large ratio m_{π}/m_{ρ}); • Currently we are extending our study to smaller lattice spacing and smaller m_{π}/m_{ρ} ratio.