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Abstract

We study two-color QCD with two flavors of Wilson fermion as a function of quark chemical po-
tential and temperature. We find evidence of three distinct phases at low temperature, namely a
vacuum /hadronic phase, a superfluid phase, where the quark number density and diquark condensate are
both very well described by a Fermi sphere of nearly-free quarks disrupted by a BCS condensate, and
a deconfined phase. We present our recent results supporting this picture, focusing on the equation of state.

This presentation is based on: Phys. Rev. D 87 (2013) 034507.

Introduction

e Intensive efforts are underway to unveil the phase structure of strongly interacting matter at high density
and low temperature.

e A wealth of information exists regarding possible phases and their properties in various models but no
reliable, quantitative results are available yet.

e Many questions could in principle be answered by lattice QCD simulations, but unfortunately their
practical feasibility is limited, due to the existence of the so called “sign problem”.

e Lattice simulations may still be used to study QCD-like theories without a sign problem providing
first-principles, nonperturbative results: this is the main aim of the present study:.

e We focus on QCD with gauge group SU(2) (two-color QCD or QCyD); it is of particular interest because
it shares most of the salient features of real QCD (eg, confinement, dynamical chiral symmetry breaking
and long-range interactions). It differs from QCD in that the baryons of the theory are bosons, and the
lightest baryon is a pseudo-Goldstone boson, degenerate with the pion.

e We study QCoD with conventional Wilson action for the gauge fields and two flavours of Wilson fermion
plus a diquark source term (u baryon chemical potential, M (x) Wilson fermion matrix):
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At low temperature, increasing p, we expect to see mainly three regimes:

® i < [Lp: vacuum.

® i1 = iy dilute tightly-bound quarks (weakly interacting baryons) — BEC.

® /1 > L, weakly interacting quarks Cooper pairs — BCS.

From chiral perturbation theory (m; < mp) we know that when p > pyy = %mﬂz
e g > 0: non zero baryon density.

e (qq) # 0: a gauge invariant superfluid order parameter (spontaneous breaking of U(1) baryon number).

Order Parameters and Observables

e Polyakov Loop: L = (Tr HQZ ", Us(n,ny4)) (confinement/deconfinement).

e Diquark condensate: (qq) = %%%Z (superfluidity).

e Quark number density ng.

e (Quark number susceptibility:
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e Pressure p = nqdp. We use three schemes to present our results:

1 0Z

e Energy density e(T') = ngit — 33721 T/, 0S

and trace anomaly 1), =€ — 3p = V<a387 g>:

these require knowledge of Karsch coefficients d(8, k,7vg.q)/d€|qa, and beta functions d(, k)/das|c—;
which can be determined from anisotropic simulations with & = as/as. 74,4 are bare gluon and quark
anisotropies.

Parameters of the simulations presented here: 8 =1.9, kK = 0.168;
mg = 0.645(8), my/m, = 0.805(9), a = 0.178(6) fm, Ty;(n = 0) = 217(23) MeV.

Correspondence lattice-temperature:
N =8 — 132MeV, N; = 12 — 8MeV, N = 16 — 66MeV, N = 24 — 44MeV.
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Quark number density n; and quark number susceptibility y,:
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e Roughly constant in the region 0.4 < pa < 0.7, i.e. approximately equal to non interacting fermions;
e The behavior of ¥ does not signal any abrupt release of new degrees of fredom;

e The different behaviour of the system at N = 8 suggests a different phase.

Pressure for our three schemes:
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Renormalised energy density and trace anomaly:
(Note: in these plots the additive term ngu, present in the definition of €, is not included)
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open symbols: j = 0.04; filled symbols: j — 0  Top: gluon (shaded symbols, dotted lines) and quark
quarks: negative numbers; (open symbols) at ja = 0.04. Filled symbols: quark
oluons: positive numbers. contributions 7 — 0. Bottom: ja = 0.04 (open
symbols, dashed lines) and j — 0 (filled symbols).

® ¢ 1s Independent of the temperature; €4 different only for the highest temperature;

® ¢4 Is sensitive to j for low u; €4 is independent of j;

e Eiven if €, is negative, the total one is compatible with zero at low p and positive for higher values;
e Uncertainties in the Karsch coefficient not included: the effect may be of O(100%);

e Negative trace anomaly, nearly vanishing for 0.4 < pa < 0.7.

NEW RESULTS: n,; at smaller lattice spacing and smaller pion mass
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e Smaller lattice spacing: 8 = 2.1, k = 0.1577, = mgz/m, = 0.805(5), am; = 0.446(3), 0.122(5) fm ;
e Smaller pion mass: 3 = 1.7, k = 0.1810, = myx/m, = 0.61(5), amy = 0.438(15), 0.189(4) fm .

Conclusions/Outlook

We find evidence of three regions at low T
1. A vacuum/hadronic phase, with (gq) = 0, (L) ~ 0, (¢b) # 0,nq = 0, at low T and p < p = mg/2;

2. A quarkyonic phase, which is confined ((L) = 0), chirally symmetric and characterised by SB scaling
of bulk thermodynamic quantities and BCS scaling of the diquark condensate;

3. A deconfined quark—gluon plasma phase at high T' (and/or large u).
e We do not see a BEC phase (probably because the large ratio my/my);

o Currently we are extending our study to smaller lattice spacing and smaller my/m,, ratio.




