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Set up of the Complex Langevin Equation

for simulations of problems with complex action.

Motivation and recalling LE

The Complex Langevin Equation (CLE) has the
potential to simulate lattice models for which usual
importance sampling fails (sign problem). In many
cases, especially for QCD at non-zero density, the
CLE in principle provides the (only) approximation
free procedure.

While the Langevin equation (LE) for real prob-
lems is well defined and comparable with Monte
Carlo (MC) simulations, its redefinition as CLE is,
however, more involved. To develop the CLE to a
reliable method is both a rewarding and a tough
task. Our working program is:
- Define and study the properties of the CLE.
- Apply and discuss CLE for simple models.
- Perform CLE analysis of heavy dense lattice QCD.
- Perform the CLE analysis of full QCD at non-zero
chemical potential (cf. talk by Denes Sexty).

The Langevin equation

The LE for a real field ϕ(x) evolving in the process
time t (here discretized, Ito calculus) is:

δϕ(x; t) = K[ϕ(x; t)] δt + η(x; t)

〈η(x; t)〉 = 0, 〈η(x; t)η(x, t1)〉 = 2 δt δx,x1 δt,t1

with the associated Fokker-Planck equation (FPE)

∂tP (ϕ, t) = ∂ϕ
(

∂ϕ −K
)

P (ϕ, t).

If the drift K = −∂ϕ S with S a positive definite
action we then have asymptotically

t → ∞, P (ϕ, t) → Pas(ϕ) = exp (−S)

Set up for the CLE

For a complex action the drift is also complex and
this automatically provides an imaginary part for
the field. This implies setting up the problem in
the complexification of the original manifold

Rn −→ Cn or SU(n) −→ SL(n,C) .
The CLE then amounts to two related, real LE with
independent noise terms - here for just one variable
x → z = x + i y and with K = −∂zS(z):

δz(t) = K(z) δt +
√

NR ηR + i
√

NI ηI
i.e. δx(t) = ReK(z) δt +

√

NR ηR(t)

δy(t) = ImK(z) δt +
√

NI ηI(t)

〈ηR〉 = 〈ηI〉 = 0 , 〈ηRηI〉 = 0

〈η2R〉 = 〈η2I〉 = 2 δt , NR −NI = 1

The probability distribution P (x, y; t) realized in
the process evolves according to a real FPE:

∂tP (x, y, t) = LTP (x, y, t)

L = (NR∂x+ReK(z))∂x+ (NI∂x+ ImK(z))∂y

One can also define a complex distribution ρ(x, t)

∂tρ(x, t) = LT
0 ρ(x, t) , L0 = (∂x +K(x))∂x

with the asymptotic solution ρ(x) = exp(−S(x))
and formally prove for analytic observables O(z)
∫

O(x + iy)P (x, y; t)dxdy =

∫

O(x)ρ(x; t)dx.

The formal proof has, however, loopholes related to
a too weak decay of P (x, y, t) in y.

Problems and Tests for effective models.

Problems and models

Very many studies for CLE since the papers of
Parisi and of Klauder (1983), many critical (a few
quotations: Ambjorn, Hueffel, Gausterer, Karsch,
Okano, Nakamura, Guralnik, ..).

Problems studied in our group:
- Real time simulations, non-equilibrium QFT.
- Chemical potential (Spin model, x y, QCD).
- θ-term.

We basically address here QCD with chemical po-
tential, here to fix the concepts, the grand canonical
ensemble (Wilson fermions):

Z =

∫

DU e−S, S = SYM − log detW (1)

W = 1− κ
3

∑

i=1

(

Γ+iUx,iTi + Γ−iU
−1
x,i T−i

)

−κγ
(

e µΓ+4Ux,4T4 + e−µΓ−4U
−1
x,4T−4

)

T : lattice translations, Γ±µ = 1 ± γµ, κ ∼ 1/M ,
γ bare anisotropy parameter. The temperature is
introduced as aT = γ

Nτ
. We have detW (µ) =

[detW (−µ)]∗ (complex).

CLE does not have an overlap problem such as the
reweighting methods (RWM) and does not involve
approximations like expansion methods (EM): The
ensemble is generated at the actual values of the
parameters without restriction in the latter.

CLE has, however, reliability problems which need
to be understood and solved.

One link effective model

A paradigmatic effective model is one SU(3) link
U . Diagonalizing U we obtain the reduced model

−S =
β

2

3
∑

i=1

(

αie
iwi +

1

αi
e−iwi

)

+ lnDD̃ + lnH

H = sin2
w2 − w3

2
sin2

w3 − w1

2
sin2

w1 − w2

2
,

D = 1 + CtrU + C2trU−1 + C3, C = 2κe µ

D̃ = 1 + C̃trU−1 + C̃2trU + C̃3, C̃ = 2κe−µ

(H : Haar measure, w1 + w2 + w3 = 0, complex).
The α’s simulate the staples of the neighbours.
As a general remark, observe that one first needs to
complexify the variables (here in going from SU(3)
to SL(3,C)). Notice also that ambiguities which
may arrive by rewriting the complex deteminants
as part of the action drop out in deriving the corre-
sponding drifts, which are just ∂wiD/D+∂wiD̃/D̃.
The analytic structure of the drift will show, among
others, poles coming from the zero’s of the deter-
minants which will also influence the CLE flow.
We observe that correct results obtain if the flow
does not drift too far in the non-compact directions.
This must be monitored and suggests possibilities
to redesign the process to ensure reliability.
In this model, for α complex, far from 1 CLE de-
parts from the exact results (solid lines). This cor-
relates with wide skirts of the Imw-distributions.
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Many Links models and Gauge Cooling.

The Polyakov chain model

To see the effect of many variables we consider an
exactly soluble Polyakov chain model:

−S = (β + 2κe µ) P + (β + 2κe−µ)∗P−1

with P = Tr (U1 · · ·UN ), N up to 1024 . The
process runs in all 8N (complex) ”angles”Aa

i of the
links, with real noise (ǫ = δt discretization step):

δAa
i = ǫKa

i (U) +
√
ǫ η , Ui → e i

∑

a
λa δA

a

i Ui

We observe wrong evolution setting in for large N
even for the real case (µ = 0) if we let the process
evolve in the imaginary direction, although both
drift and noise in this directions are 0! We can
measure this effect by measuring the departure of
the links from unitarity with the unitarity norm

U =
∑

links

[

1
2Tr

(

U U† + U−1U−1 †
)

− 3
]

The above effect suggests that numerical im-
precisons may trigger unstable modes prevent-
ing correct sampling. For simpler models fix-
ing the gauge helped (Berges and Sexty, 2008).
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Gauge cooling

Using the gauge symmetry of the problem we define
a general gauge cooling procedure to bring the sys-
tem as near as permitted to the unitary manifold.
This proceeds by successive gauge transformations

Rk = eiα ǫ dU , Uk → Rk Uk , Uk−1 → Uk−1R
−1
k

with α: the strength of the gauge force, ǫ: step size.
For µ > 0 U should not be 0 but stabilize. This
we see after enough cooling (large α and/or many
cooling steps). Then also the results are correct
and the non-compact distributions narrow.
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Heavy dense QCD

The heavy dense model (HQCD)

HQCD obtains in the hopping parameter expansion
of the fermionic determinant in the double limit

κ → 0, µ → ∞, ζ = κ e µ : fixed

(Bender et al 1992). In this limit only the
Polyakov loops survive and the determinant fac-
torizes. This can be used, e.g. in refined RWM
simulations (cf. De Pietri et al, 2007, where also
the relevant formulae and the next corrections are
given). The model represents a systematic approx-
imation of QCD but also a model by itself, away
from this limit (Aarts and Stamatescu, 2008).

We observe the same effects as for the Polyakov
chain. The following results are obtained with suf-
ficient cooling. We measure plaquettes, Polyakov
loops P and P−1, baryon density and the average
phase: 〈exp(2iφ)〉 ≡

〈

detM(µ) detM(−µ)−1
〉

.
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HQCD: comparison CLE and RWM

Both plaquettes and Polyakov loops agree ex-
tremely well for all values of µ in the deconfined
region (β = 5.9, 64 lattice - the large errors belong
to RWM). At fixed µ = 0.85, 64 the agreement
persists except for β < 5.6, indicating possible dif-
ficulties of the CLE. This effect seems, however, to
be β and not scale dependent, for large lattices we
can reach deep into the confining region (compare
the 104 lattice, where the transition is expected at
β ≃ 5.9). The excellent agreement between these
two completely different methods validates both.

For a general review see Aarts et al, 2012.
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