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derstood by using an analogy (Fig. 1) between the gold-
stino and magnon in ferromagnet suggested in Ref. [12].
To this end, we perform an analysis on the spectrum
of magnon in ferromagnet. In ferromagnet, there are
three components of magnetization: mi(t,x) (i = x, y, z).
These are conserved quantities, so the Langevin equa-
tion [14, 20, 21] is expected to be useful in analyzing the
spectrum of magnon. The Langevin equation [14, 20, 21]
for the ladder operator m+ ≡ mx + imy is given by

∂tm+(t,p) =
iΩ(p)

χ(p)
m+(t,p), (2.45)

where

iΩ(p) ≡

∫

ddxeip·x(iLm+(0,x),m+(0,0)), (2.46)

and χ(p) =
∫

ddxeip·x(m+(x),m+(0)). Since we do not
analyze the damping rate, we omitted the dissipation
term, and we also neglected the noise term because that
term does not contribute to the dispersion relation. Let
us analyze the low energy and momentum behavior of
Eq. (2.45). The behavior of χ(p) can be seen by the NG
theorem as follows: We consider the case that there is ex-
ternal magnet field h pointing along z axis in the system,
so the Hamiltonian is given by HG = H − hMz, where
H is the Hamiltonian at h = 0 and Mz ≡

∫

ddxmz(t,x).
By using the properties

〈[M+,m−(t,x)]〉eq = 2m0, (2.47)

〈[M±,mz(t,x)]〉eq = 0, (2.48)

where m0 is the magnetization at equilibrium, we get
1/χ(p) % −β(h+ κp2/m0)/(2m0) in the same way as in
Sec. II A. Here M± ≡

∫

ddxm±(t,x) with m− ≡ mx −
imy, and κ is called stiffness constant [22]. We note that
these properties correspond to Eqs. (2.16), (2.22), and
(2.31) in goldstino’s case. By using Eqs. (2.47) and (A4),
we also get Ω(p) = −2m0/β. By collecting the behaviors
at low energy and momentum, Eq. (2.45) becomes

i∂tm+(t,p) = −
β

2m0

(

h+
κ

m0
p2

)

2m0

β
m+(t,p).

(2.49)

Thus, the spectrum of m± is

ω = ∓(h+ αp2), (2.50)

where α ≡ κ/m0. Equation (2.50) is the well-known
result for the spectrum of the magnon in ferromagnet,
and we see that this expression has the same structure as
Eq. (2.40). From its derivation, we clearly see the analogy
between the goldstino and the magnon in ferromagnet:

• The goldstino q changes a boson to a fermion while
the magnon m− makes a spin up to a spin down.

• If we consider s = 1/2 case, we have q2 = q†2 =
m2

± = 0.

fb
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Q
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m-
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Goldstino Magnon in ferromagnet
Charge: Q, Q†, N, ∆N

Broken
Charge: M+, M-, Mz

Broken

FIG. 1. Similarity between the magnon in the ferromagnet
and the goldstino.

• In the case of h > 0, all the spins point in the di-
rection of the positive z axis in the ground state, so
m+ can not make an excitation. Thus only m− is
realized in that case. Therefore, the sign of h deter-
mines whether m+ or m− is realized as a magnon
like, so the role of h is similar to ∆µ in the case of
goldstino.

• Most importantly, both excitations have the type-
II dispersion relation. In the magnon case, this
fact can be explained [14, 15] by checking the ex-
pectation value of the commutator among the con-
served charges, Eqs. (2.47) and (2.48). The expec-
tation values of the (anti-) commutator among the
conserved charges, Eqs. (2.16), (2.22), and (2.31),
have the same structure as those in the magnon
case, so the type-II dispersion relation of the gold-
stino is consistent with the theorem obtained in
Ref. [14, 15] if we use the anticommutator instead
of the commutator.

We also note that there is an big difference between the
goldstino and the magnon in ferromagnet. In the case of
magnon, only positive energy mode exist and the nega-
tive energy mode does not. By contrast, there are pos-
itive and negative energy goldstino excitations, though
the negative energy one is occupied and forms a Fermi
sea at finite temperature [12]. This fact reflects the dif-
ference of statistical property of these two excitations:
The magnon is boson while the goldstino is fermion.

III. PERTURBATIVE ANALYSIS

In this section, we derive the generalized kinetic equa-
tion that is equivalent to the basic equation in the RPA
in a model suggested in Ref. [13]. We also derive the
expression of the dispersion relation of the goldstino at
T = 0 and T '= 0. We emphasize that the analysis at
finite T has not been done yet.
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Summary
•We obtained the expression of dispersion relation and the strength of the goldstino at finite T (at weak coupling, continuum 
limit).

•We understood the similarity between the dispersion relation of the goldstino and that of the magnon in ferromagnet by using 
the fact that the (anti-)commutation relations have the same structure.
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We study supersymmetric (SUSY) responses to a photoassociation (PA) process in a mixture of Bose molecules
b and Fermi atoms f which turn to mutual superpartners for a set of proper parameters. We consider the molecule
b to be a bound state of the atom f and another Fermi atom F with different species. The b-f mixture and a
free F atom gas are loaded in an optical lattice. The SUSY nature of the mixture can be signaled in the response
to a photon-induced atom-molecule transition: While two new types of fermionic excitations, an individual b

particle–f hole pair continuum and the Nambu-Goldstone-fermion-like (or “goldstino-like”) collective mode,
are concomitant for a generic b-f mixture, the former is completely suppressed in the SUSY b-f mixture and
the zero-momentum mode of the latter approaches an exact eigenstate. This SUSY response can be detected by
means of the spectroscopy method, for example, the PA spectrum which displays the molecular formation rate
of Ff → b.
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Introduction. Recently, studies in the supersymmetry
(SUSY) for a mixture of cold Bose and Fermi atoms have
made spectacular progress [1–3]. In such a cold atomic system,
however, a Bose atom never transits to a Fermi atom, its
superpartner, or vice verse. In addition to the nonrelativity,
this is another essential difference of this low-energy SUSY
from the SUSY in high-energy physics. For the latter, such
SUSY decay processes are always anticipated, for example, a
quark (lepton) may emit or absorb a gaugino and decays to a
squark (slepton), the superpartner of the quark (lepton) [4].

To expose the interesting SUSY nature of the mixture,
the effective “decay” process must be introduced. For a
cold atomic SUSY mixture with Bose-Einstein condensation,
there is an effective decay of SUSY generators since they
behave as the fermion annihilation and creation operators
[3]. Therefore, the SUSY excitations can be simulated by a
boson-enhanced fermionic excitation. As a result, a Nambu-
Goldstone-fermion-like (or “goldstino-like”) collective mode
in the condensation phase of bosons could be observed by
means of the single-particle spectroscopy [5,6].

To achieve an exact SUSY mixture, the system parameters
must be fine-tuned, which requires elaborate experimental
setups and then loses the generality. In this article, we explore
how to observe the SUSY response by means of a spectroscopy
measurement, even if the mixture deviates slightly from the
SUSY and the bosons do not condense to form a whole ordered
phase. This can resolve the fine-tuning restraints in measuring
the SUSY response. On the other hand, the explicit breaking
of the SUSY may create new excitations, the bosonic particle–
fermionic hole individual continuous excitations, other than
the collective goldstino-like mode. Although our theory is
nonrelativistic, the creation of these new excitations due to
SUSY explicit breaking should be quite general. This may be
a helpful point in the study of SUSY in relativistic theory.

We consider a mixture of Bose molecules b and Fermi atoms
f with on-site interaction in a d-dimensional optical lattice
(d = 2, 3) [see Fig.1(a)]. With properly tuned interactions and
hopping amplitudes, this b-f mixture may become SUSY [3].
We are interested in a special kind of molecule b, a bound state
of f , and another species of Fermi atom F with binding energy
Eb, and we restrict our analysis to the normal phase of the b-f

mixture [7]. To probe the SUSY behaviors, we load a free
Fermi atom F gas, which does not interact with both b and f
directly. In a photoassociation (PA) process [8], the transitions
between two atoms and one molecule, that is, Ff ↔ b, are
induced by two laser beams with frequencies ω1 and ω2. For
the SUSY b-f mixture, this resembles a high-energy physics
process: a quark or a lepton (f ) absorbs a fermionic gaugino
(“absorbs” an F and emits a photon) and decays to a squark
or a slepton (b) or vice verse. (One can also consider f to be
a Fermi molecule formed by the bound state of a Bose atom b
and a Fermi atom F , i.e., processes Fb ↔ f . We study these
processes separately.)

For a negative detuning, δ0 = ω2 − ω1 − Eb, we show that
the molecule dissociation process b → Ff is forbidden. In
the formation process Ff → b, two types of new fermionic
excitations, an individual (bosonic) particle–(fermionic) hole
pair continuum and a collective mode, emerge when the SUSY
in the b-f mixture is slightly broken. For a SUSY b-f mixture,
the former is completely suppressed while the latter in zero-
momentum becomes an exact eigenstate, the goldstino-like
mode [3]. In this sense, we regard these excitations as the
SUSY responses. The PA spectrum is directly related to the
the molecular formation rate varying as the detuning and
faithfully describes these two types of excitations. The position
of peak in the PA spectrum determines the frequency of the
collective zero-momentum mode. This molecular formation
rate is measured by the number variation of the F atoms in
time. Experimentally, the number counting of atoms is much
simpler than detecting the single atom spectrum.

Model setup. The system illustrated in Fig. 1(a) is described
by a Hamiltonian H = H0 + Hex, where H0 = Hbf + HF

with Hbf = Hb + Hf + V . By means of the Feshbach res-
onance [9], the scattering lengths between F and the b-f
mixture can be adjusted to negligibly small. In the tight-
binding approximation, one has

Hα = −
∑

〈ij〉
tαa

α†
i aα

j − µα

∑

i

a
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i aα

i ,
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Introduction. Recently, studies in the supersymmetry
(SUSY) for a mixture of cold Bose and Fermi atoms have
made spectacular progress [1–3]. In such a cold atomic system,
however, a Bose atom never transits to a Fermi atom, its
superpartner, or vice verse. In addition to the nonrelativity,
this is another essential difference of this low-energy SUSY
from the SUSY in high-energy physics. For the latter, such
SUSY decay processes are always anticipated, for example, a
quark (lepton) may emit or absorb a gaugino and decays to a
squark (slepton), the superpartner of the quark (lepton) [4].

To expose the interesting SUSY nature of the mixture,
the effective “decay” process must be introduced. For a
cold atomic SUSY mixture with Bose-Einstein condensation,
there is an effective decay of SUSY generators since they
behave as the fermion annihilation and creation operators
[3]. Therefore, the SUSY excitations can be simulated by a
boson-enhanced fermionic excitation. As a result, a Nambu-
Goldstone-fermion-like (or “goldstino-like”) collective mode
in the condensation phase of bosons could be observed by
means of the single-particle spectroscopy [5,6].

To achieve an exact SUSY mixture, the system parameters
must be fine-tuned, which requires elaborate experimental
setups and then loses the generality. In this article, we explore
how to observe the SUSY response by means of a spectroscopy
measurement, even if the mixture deviates slightly from the
SUSY and the bosons do not condense to form a whole ordered
phase. This can resolve the fine-tuning restraints in measuring
the SUSY response. On the other hand, the explicit breaking
of the SUSY may create new excitations, the bosonic particle–
fermionic hole individual continuous excitations, other than
the collective goldstino-like mode. Although our theory is
nonrelativistic, the creation of these new excitations due to
SUSY explicit breaking should be quite general. This may be
a helpful point in the study of SUSY in relativistic theory.

We consider a mixture of Bose molecules b and Fermi atoms
f with on-site interaction in a d-dimensional optical lattice
(d = 2, 3) [see Fig.1(a)]. With properly tuned interactions and
hopping amplitudes, this b-f mixture may become SUSY [3].
We are interested in a special kind of molecule b, a bound state
of f , and another species of Fermi atom F with binding energy
Eb, and we restrict our analysis to the normal phase of the b-f

mixture [7]. To probe the SUSY behaviors, we load a free
Fermi atom F gas, which does not interact with both b and f
directly. In a photoassociation (PA) process [8], the transitions
between two atoms and one molecule, that is, Ff ↔ b, are
induced by two laser beams with frequencies ω1 and ω2. For
the SUSY b-f mixture, this resembles a high-energy physics
process: a quark or a lepton (f ) absorbs a fermionic gaugino
(“absorbs” an F and emits a photon) and decays to a squark
or a slepton (b) or vice verse. (One can also consider f to be
a Fermi molecule formed by the bound state of a Bose atom b
and a Fermi atom F , i.e., processes Fb ↔ f . We study these
processes separately.)

For a negative detuning, δ0 = ω2 − ω1 − Eb, we show that
the molecule dissociation process b → Ff is forbidden. In
the formation process Ff → b, two types of new fermionic
excitations, an individual (bosonic) particle–(fermionic) hole
pair continuum and a collective mode, emerge when the SUSY
in the b-f mixture is slightly broken. For a SUSY b-f mixture,
the former is completely suppressed while the latter in zero-
momentum becomes an exact eigenstate, the goldstino-like
mode [3]. In this sense, we regard these excitations as the
SUSY responses. The PA spectrum is directly related to the
the molecular formation rate varying as the detuning and
faithfully describes these two types of excitations. The position
of peak in the PA spectrum determines the frequency of the
collective zero-momentum mode. This molecular formation
rate is measured by the number variation of the F atoms in
time. Experimentally, the number counting of atoms is much
simpler than detecting the single atom spectrum.

Model setup. The system illustrated in Fig. 1(a) is described
by a Hamiltonian H = H0 + Hex, where H0 = Hbf + HF

with Hbf = Hb + Hf + V . By means of the Feshbach res-
onance [9], the scattering lengths between F and the b-f
mixture can be adjusted to negligibly small. In the tight-
binding approximation, one has
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FIG. 5. ∆µ as a function of temperature. Unit of energy is
the hopping parameter t. The parameters are set as follows:
U/t = 0.1, ρ′f = 0.5, ρ′b = 1.0.
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for Eq. (3.41) as a function of T is plotted in Fig. 6.
The parameters are set as follows: U/t = 0.1, ρ′f = 0.5,
ρ′b = 1.0. We see that α tends to increase when we raise
T . This tendency can be understood in the following
way: The integral appearing Eq. (3.41) increases when T
increases because .

D. Molecular formation rate at zero temperature

The spectrum of the goldstino is reflected in the forma-
tion rate of b [13]. In zero temperature approximation,
the is given by

R = . (3.45)

We see that this quantity contains information of α.
Since we have the expression for α, Eq. (3.43), we can
analyze the dependence of on the interaction strength U
and the density of the fermion and the boson.

IV. SUMMARY AND CONCLUDING
REMARKS

We found that the energy of the goldstino is propor-
tional to p2 (p: momentum of the goldstino) and the
damping rate is proportional to p4 when the gap of the
excitation energy is zero in a model-independent way,
and showed that the momentum dependence can be un-
derstood by using the analogy between the goldstino and
the magnon in a ferromagnet. We also found that the
gap of the excitation energy of the goldstino is equal to
the difference of the chemical potential of the fermion
and the boson. Furthermore, we derived the generalized
kinetic equation that is equivalent to the basic equation
in the random phase approximation, and obtained the
dispersion relation in T = 0 and T != 0 case in weak
coupling regime in the model suggested in Ref. [13].
The existence of the goldstino is universal in the sense

that it does not depend on the detail of the Hamilto-
nian, so there are other models in which the goldstino
may appear and which are realized in experiments: In
Bose-Fermi Mott insulator [11], the goldstino can appear
as a counterflow [27] if we set tf = tb and Ubb = Ubf .
Also, in the Bose-Fermi cold atoms in which the BEC is
present and which are not trapped in the optical lattice,
the goldstino can appear in the case that Ubb = Ubf and
the masses of the fermion and the boson are equal.
Obtaining the coupling among the goldstino is a re-

maining task. As in the coupling among the π meson [3]
and the magnon [], we expect that the form of the cou-
pling can be determined from the symmetry. Calculat-
ing the spectrum of the goldstino in the Bose-Fermi cold
atoms in which the BEC is present is another remain-
ing task. Since the goldstino spectrum is reflected in the
fermion spectrum due to the presence of the BEC [12],
this task can be important from the experimental point
of view.
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By contrast, quasi goldstino in the Yukawa model, QED/
QCD has a similar nature to phonon, which is type-I mode.

V. V. Lebedev and A. V. Smilga, Nucl. Phys. B 318, 669 (1989)

Whether the NG mode is type-I or II can be 
determined by checking the expectation value 
of commutator of the conserved charges.

Y. Hidaka, PRL 110, 091601 (2013), H. Watanabe and H. Murayama, PRL 108, 251602 (2012) 

Analogy between the goldstino and magnon 
in ferromagnet is valid due to that theorem: 

<[m+, m-]>=2m0

<[m±, mz]>=0

<{Q, Q†}>=ρ

<[Q, ρ]>=0

ρ⇄mzQ, Q†⇄m+, m-

Type-II dispersion relation of the goldstino can be explained 
by using this analogy.

ρb : boson density
ρf : fermion density

ρ=ρf +ρb 

nB : boson distribution
nF : fermion distribution

U -1 U -1 U U -1× × =U -1


